X SRR RURTRISIRRAL L AR

3

AR N CA A MY A= 7= S35 A DA R bt A A 38 R T e AT R 9, iz F 2 Fh 5
AR RS IR FhAE A 7 R AT AL, SRECR SRR AR, B SRR RIS AL A
REHE, AT RS B i/ MERAS R 55 &

St —: IR T B A I R EUR AT B8 D BRI T 2
FH T BEMLSAE 7 20l SRR & 0000 A0, 15 H I0000 A WG 2R T R 0 AR) A bR
B, X I mA TR, FRBEAEL—NMEFEL, S RTER
MERAEBEEZ N7 185, BEEFEAREIE R, SuitiRzE Boax TR
BRI AT LYCRNIERIF & IS0 A, 3T z R H R ENFEAEn. 53
—ANES BRSNS, BTG, X SN R TR RIS
THER R T, S B RS A R A B A B 2R B
B, MR T A IS A, $m TR R0R

TR = AR AE PRI AR A AN T B R A I RS, A s H bR
PR, T R RN N TR IR, Wi RS T a1, 456
IR 2 BER PR AT U R B), R SRS IRI AN SRAFRIEER T 7718, BLUA
[F R SRR PR AR, 43 H B NS RS 58 o B e 20 SR R R R 7S Rl R T
HEAT BAR LR 0 H

EESFRB=: X M R R . TR R, ek T R
B ETE, FTx 2 T T & IR0 MO A 2 2 e B I R,)
A) A 2E 2 R R R, X B AR RV B . R RE R R AR 2 A
IR, KRN RIS e, FER AT B AT o ZETH B AR T AT 2 R
i IRER B SN DU ER AR, B R RSN R, B EIT RN, B H
PSR BB A B AR A T AU BB K, SR W SRR A N) ek g A BRI O
AR 2 JE T 8 NMEFEAFIIE R, B BimiE TF . n MR, &ER
BRI T E.

ST RRIY : AT RN LIRFTE MRS A ESERRAEE T, BT EA
5 T SRR AR 2 B R, T 1) A e J =, S [R) 2 A A e R rp
Z K536 007 S e I R BAG X TE), SR IR SR IR aVa Bl e K13 sh v
BT IES A, EH N m AN a8 =T R B E i SR AR 5 U s 5 R
W AR AT W LE Ay BT, FEE B/ alevk 9 = 4E R E AT I, kgl AR
PR o

M, AR B sk 7 AR SEBR A ML AR R i AR A A BLSE R .

R B REEM SR RSB U A TR

. ey I = | = || o
. EEE =

Alb R A E B B R SCBERA Y, I R SRR b R AR A AT R FE G E
o N TS BRI R, AV NI CLUR AR RS RN REHIR
EER T 5 SRR VE AT e B . X R AR ER AN B A S B, A DR B LS
AISE, ANEARAT Ry o AIATPRIEIN . 2R SR A IE A 1 75 20d . AT AT MERTE 78 R e
k. A AR 78 70 IR I AE SE Bk P A BIRIE R R, A BEBN 2R
XLCIE DL : AR A8 R, NG BRI 5, PP IE R R, X
FORXSANF T SR AT B A, ABASE S . R SRSFEN: REHIR AL
FHALIEZ AT £ ATRE T, WRIEES L2 TrH, T2 L5 H
J G R AL ER], JEHGR LXK IE I, TRt (R e 1] . XA AT LA
M2 T T ORI, 8 A I RER . RS B N X SR S R R SR
FRARAR 8o £E SR SR RE A S BEEE 78 7025 18 T AR SR) i L, B B AR KA I8
B IR PR B EAERBIHT RN

XL LRI T Ak SR AR AR R AR A, A Bh T b AE R 2 %
AR T A T S IR PR3 o Alb AR 77—l 777 i, 7R ZER I 2 MR O
FFAERC A, 2P Reth o XA A EE R RIGAIREAC . 2 AR i ik
AR T ORBE R R, A AT R R AN R i B DA RIS A o] ALK
BT D SRR R TN 5 58, DA E f2 S 4 Bt B RS (I e, BRI E
R AAR B RS, 3 ATASI L SRR T S BB AR 5 RS . PR A A
M2 Th. SFRALE TR, ZORE X BARREESE RFTT 5. Basma MR
B A BT AR RS, M RTIR SR BRI AL A LR (2R
K37 it o A IC N AL, Ay SIE R EA BT, a6 AR A 2% L e 7k
BB B R, Al A T R BT .

O U111 s i

2.1 [E—H

DN RE e 2L 5 R AT A PR 2 AR AR ARSIy 5 5 A Ul e I R) R
B ORI 25 R R T SR A T AR R R AT A v R, DR s ity 45
RERIAF & ZIIATX ~ B(n,p)o 2T T A IR o B R J50R0 SRR 7 A R
e, BRSSO IRE n T, SRR BRSNS R AR I
M. Ve ERIEEE AT R bR, BEERIREAR BN, I A0
EFIES2ATX ~ N(np,np(1 —p)). AT ARG B 5 45 28 AN sk, RIZE]
i 0 T N AR 408 B 52 T B, AT 1) R BE IR 4 B A SRR AR g R o 1A
M7 Sl 45 & I AR EAN e TR 36 T i o

R A EIR B R/MEIEL WENRE, BT, XREIA
FeOUhpE T 58 AR HUE S IR A T S i D BAEA, IR SR,
UE T LA B SR . i /b, AR TR, HER T EPEREE b
FNIE.

BRI A BT i, ERES A R E ERRTSE S, s i
BEN A RPN F B O R EAS L, WTIFEAR 1 A I A, S
(T &

2

https://baike.baidu.com/item/%E6%8A%BD%E6%A0%B7/1163966?fromModule=lemma_inlink

2.2 5B K4

NPT EA M S VAGE I, 70925 B BUfil € 2 AT R Il i g sk X —
RATT FELR 57 P8 ARG MR Pl o 5 A AN B B K 3R, AT DAk £ 4xim
R CAR R BB 5 ANFEANAE A, B0 by LA I A e I DA AR

Al 7 BTN TR AL 5. TN NI B R R 1%
PR ATV I8 ot 2 TIURAS 23, RLAR AR AN PR A ReAR TR I 1 v E 7 25 (K1 A 5%
FIS R Ja AR R R AL Ao B i) RS B T S R e iR 5 . O T R
A E SRR, W DU RURE R IR GBI T T L R A SRR . A
FEVEE R SRS, K% 40 5 5% B B (R0 R A 0 3R B A 8 PR 5 PR 1

KB RIBARRAA R B AR, W IRAELS 5E BRI T A ik 5. SIA
SR RIS, B KB RENUREA RS AT, Pl A Rl R B4R (15 K
A, DT BE 2 T L B g8 AN] SRS PRI 2 5 500 o O T SRIE IR IR T %6, R E
INRIANIR] (A 77 BT SR R 1, BRI T AR R B AR 2544« 0 R XU
Letiidg e o JE I XX EE I K TEAH LL B S 70 A, W] AR A 2 R 2 1 R 2
RO BRRAS R et e i RTS8 %%, IXORHR A HE th— B b
ROLRE A7 PR HE RIS S o

2.3 FFE=K)

FEIRANIR T [0 R = (R R T5 SR, ol - il U 0 B 229K, i AL 4t
JHENS SR FOEE 5T R R 2R AU, B, 20 7 2 T & IFfmer sk
W o 45 2 TR AL RS s R R — AN AL (R R SR, ST [—
P 2H 2 BBt O R, It — 2D I — 38R N P 4 B 2 i R B B
DR B AR A PR 2 N %D B AR N DR SR R AL, H
T A B4 HAS AR B DR SRHESE

SINTIATUHREOR, 70 A IR BTN AT AL BERE /7, I s S
RERIPAT o FETHELIRAR A S i ORI, SR T DU A 5, JE I Rl &5
e B SRR, SCIL TR AT AR AL T, DR SRR 1 IR SR K
¥ o

A Rl D VSR AR I PRGBS T fo DL TR SRS, SR T S RIS R T
2T R DA [F] R SRR A (14 BRAS 5 XSS o e 9/ 75 2 e B AU 1) B A K
B, BRI TR SRR . WAE T INERA S S AT BTk
ha BB 4 59k, Bznikg2 o 24 milE T Sn i FEF e84
PR I IR TR, B AAT S TE T OO A A S) B I R
FT G, A RSO T B SR S SR

2.4 5] R IY) 43 Br

FEARNVH A P PR, BT U0 2R B AN S VEAT Sl AR AR b T BE L LR 2
X I R R) = i B A [2 B 75 R R B R R U R
MBS X TR o RGO 2 BRAEAE — MR WU A, 3 A A s BT PR 7
BT 4G 5 SR B BRI o 45 2B 28 I A T RE RSO0, K 2 Tl AR e O R 2%
N T IR, AT PURIBCR A5 PR & 1071k, 0 & AR BB 5) 1
Fr s ANITTAS R — AN BE O TR AT R SR TT 58 o G5 R IR AN E 1R i) D S 4
KPR TN RS .)i 5 AR RS R R I A S A e 32 AT 0 e 3 A

Nt BIAEFIRAC RS, R /D ik i i = 4R 2 i . R/ ke

3

AT DA R TR SR AR B (A A BB . R AR S 2 | 1k
LRk R AR, IR A B BV R S BB S TRINME 2 TRV 22 5, AT A £l
AL B A B A0 4 T 11 SR S

25 HAEAZE
A ‘AHﬁﬁ&ﬁ
HR &Y &
2Eks ||BEER
4 AR X A T & X] |
o HE A4S)

=. EX R

— BsE IR RCPER, BESFECPE O AT RETE R AR R .

T BORAE St B FEBC A B ZEL RS RGBSR AR S R LR A S B
Jl AT A2 SE4f Y o

= AR BCE SN R T e, Wi RS PraREA
RIE AR RCR UL, ORI I R AT .

UL R RN, FEAF b RA I B E, Ao b R,
i A SR B A 9 P P8] E

T BB A R I) 2 R R A AR o B S B F BC A CRE D U R,
A ASE I AR K i 36 5 AR IR i AT 5

. fFS55RH

s 5 PR
1 % WGRES
2 d TR AR R
3 C DA
4 A BT
5 B For il 2 FH
6 S WA K B
7 L Prfd 2 A
8 M MR
9 n FEA &

hi. REIRENT 5K

5.1 FE—: REAEART HRE

5.1.1 HEHER

BEXH) —, vt — R I 75 58 LARf 8 iR AR B, H AR A SRR S R
AEERIRTEE T, DRI s, ASeliX — B s, RBUBR RS 5 R. BT
o) 2 MR 535 . TR0 A

HREME (Ho) : FEEAFRS AT AR < po; A&
(Hy) : FEERAERR SRS T HARRE p > poo MRIE I A0 MER 2 2R BT
PETR, RHIECE R S MR 23T 00, SR H LI B ARk (L BE A i PRI A% T
i AR G2 FoA Se b 3. PR3 e R B B AG 56 X e R I 3

BE - LR MET RS, e ARKE, T, XEEIA
FPOUIRE T 56 AR B AN L R et D EREAS, AR R,
YeE IR B SR . i /b, XFET X, HERN T LR, ik
A o

iz XA BT, EREST 2 BB M RTIR N, s ke
USSR AR E AR R B S, T RE T AR A, $Em
Oy
5.1.2 IR H R AR I8

BB AL N i IR LA B Am, AR SRR R B S AR 36 SR R B U IE L,
M Hh N A AR . WA mad RS IR X ~B (n, p).
Iy AR T A pR

P(z=k) =Clp*(1—p)"*
SRR A0 R L
k
P<k) = Cip'(—p)"

BEENRIE K, XIEBURMIESS T X ~Nmp,np(1 —p)), BRAGREATINE
NIEZS A3 AT NE 2R 2 2%
1 (z—np)?

e’%p(lw)
v/ 2mnp (1 — p)

B 1 ni20 ZAHHAEE0HEE B 2 nIR50 ZFA5 A iE &5 AR
5% g A& 5% g M &

Normal PDF
f\ =1 Binomial PMF

P(z<k) =

https://baike.baidu.com/item/%E6%8A%BD%E6%A0%B7/1163966?fromModule=lemma_inlink

5.12.1 Z K56

XFnBRIIHER T, Mo =+/np(Q—p), FHITHE

_ _lp—p|
Po (1 - po)

n

£ 95% M5 FE N A E FECAF s R bk, MBSO L BC .

B3 A= (1) FAELRLLHI%F

1.000

0.9754

0.950

0.925 4

0.900 4

FRYEE

0.875 4

0.850

0.825

0.800 4

—o— JEULLH)

T
20

T
4

T
1]

o
HEg

T
100

T
120

T
140

T
160

£ 90% A L N IAE FECAF U R A I ARAR A, R SOZ At B ft

B4 RE— () #ARLELILHILE

0.03 4

5.122 TG

—o— JEUEES)

B/ T, BT EER>, T P R AR

T

Z<P<w=k> —np)

T
100

df=n—1

B TR R A AR AR R AR AR, I D BELIR ZE (R, 5 AERE AR B/
TS0 T, OBUARI IS, RVFMIKSEIGIER, BT ses, SREAEMR
K — LR A, RAREA R, 4R mEL.

5.1.3 FRME LR

7 ENEAR LA I8 AR A TR W BU AL SR, FER PR Ge T 3o 2 P 1 []
i, JE B IME IR R EOR Sh BT AR R B E KT, PLU R A
HIRE I A IR IR . BRI S : Suit B &M iR BREg i
% AHBEME, RSB KRS R THE S SRR 2 R BA E R —
Bk BAMBIMRERE: LS EEMERRTIR T, @ A g, Uk
A SBLIHIRE B, T PR IR A . BhaS TRl BAS . I sh A Rkt
W, SERPPPAE RIS R EG R, MRS R n] gk, 12
R ARl BIRTTEE, SEUEBARECAR N T E R AERR RS, AT
PER AR IR IR AR

W RIS, e N B HIKE, p AR B RS A THE, pNESE
W, BIFREHEP(P —pl > €) < alIZMETR, T n, HrhelmriEz
fiR 2 Vu .

W Zh A P RE SR, SSIN Ml DARRAE S MRS B8 i AR 1) [
i, PRI RE .

B 5 ABRmELE AL

(THG)

\ 4

Z o

Ho L 4

| Bl e CEi

MFEBB (Ho) « FECAFR bR AT HARFRED < po-

P(z=klp) _ P
P(z=klp) ~ Q

7

MFFRE (HO « FRAAMRSRETHRE p > po-

P(:c = k|p0)

P(z=k|p,) <@
PA
P(-’E:k|p0>
@= P(z=k|p,) =P
T 2k B A

RFEBNAS B EAT I AL, AT AEA KBS ERIRTIR T, Ak IR CE .

5.1.4 20

HArs HFEAREANS, X HEE 10 MEARE (45 54 3 WL % 3):
E 95%HIMEET, Wi eI rYs:

G, = [14,15,20,21,27,33,34,35, 40, 41]
s A P IE 0, =28.
TE 90%MIME TR, eI KA s:
= [21,22,23,36,37,38,39,51,52, 53]
BAFEAR R ME R 1,=37.
TR R A BORAR SR ME, TEREAEE/NIEOL T, A T BEL

RZEMIRCI, SOVFE SR A A B 0 SR Al b P DUCE A AR AT b e e A I
WRAE bR A R, AR AR BRI = A R

HEBUXESEE 95% 1= FE T HEUL 0%15 E NI
. L | B E EFAT R SR
8 i FFIE AR ik . , L
k< 2o : 52
M — P B AE, FEIC, gﬁ/ioj'ﬁiw’fﬁ, VB R, EHF
FER BT SR S Hk B . N
.) - j: }L’QDU* s~
S ey | mintiag sou, g | D RHERABICNT
|nmax_nmin é_};ﬂ ﬁé?j‘éqi }E'lb/fﬁ, ;I“B.It'i‘o
))
. Y s HRE T RR ST
max ~ 'min| * 7 o *él—t }1’%)‘ kil <
p<k<? : - p ggg jﬁ HOREL ot o 50%, %4 RE
’ ° EFR, BEES.
FRBRETR, k&l | ., 2o @
p> S kn, g, waw | 2 URETR, KA
|7 max — Toin| 7 ’ ’ S AP EsE, B

5.2 F—: HT R RS R B ARRI R T R

5.2.1 BERAIEAL

NAEARMY A P R R SEIL A e /M, RTINS Sl ol A5 55 XUz, 7R

FRE AR AR

AL I T AR BT AN RS Ay, S BT

FERREAN LI (RO SR, RBU BEATAI . A B E T, AMUBE S E
BRI 2, W SABE R RAS . SRR BUR K T ik S . R RSR

8

AR, R R E SR A I T A T N2 R ST, I8 BRI BRI o5k
BRAR, JFASE SR RIS %, B RIS TN SRS T (1 A AR B, AR
BUTELS 7€ AT N A AR ARSI 77 58 @I X EL oy A 7S P AN IR 1 55 R IR READL&
R R RS e v AT HLAT Al A P AR v R e A I S, AR b S i
1 H il R PR AR

N T RGEEA AR L,] DA — R A, R AR —
AAEFEIRATIARI SR . A B RN SR IS A OR VP AN R RSB T
RS AS . BRI TR 45 R BRI PRSI A0, 38 Vv 55 fe /N AR i
o SARF RIS TR EBENL ARG D0 B A .

B 6 FA_RZAZR
FEHCA 2

Pty il
Rt

Pty il

i

<UL
1. 2RI

® NI FELA T A5 T EAF R AR BRI A) DL A AT R = B A IR
R, (HERIH R U BT R, S SRR IR E kA
® I FACIF: TR ah R, WA — T A REAT A I, Ak
AERVGIE S N SR SRS € EE W B a2 At

2 &1 R ARSI -
© NI A Ah ;A F LA o B U SR A LA Ut BRI, T T i
AN, HEIATHE, DIRRRERA, (HIZRE RS
® Fr I ity A O 5 B O SR A R, U KT A AT A
T, R HIEE e e B R A AU

3. R

© NHEATIRME: R AN BE R AR ARIS , AT B AT & 5

9

® EATYRAR: X TR AR IR AR O AR ZE B IRET, AR REEAT IR, X

—SCBRIEIARIR , AER IR ZR T AN R AR AR B R () 4 2% AR
5.2.2 HRHRImIt 2

dy,dy: FEEXTEEA 1 AR 2 BTN, dy: 25X BRECR AT IS
M, Dyp: REXTEI I E A% B BT IR . dy, dy, ds, Dy €{0,1}

Wepy, D2y P33 AN ERCAE 1. FEAE 2. B REER, CRBT A, B,
B,, By NRIEAS, Ay, Ay, Ag NEEAE 1. FEA: 2 A S i 2EEAY, S
WIBVR A, LIRS X T RGN R -

T BRARIWEE . BRARMWEA ., EEAFRE 5

N
Ne= 1—p(1—d)
S;=A;N;
Sy=d; L By
1—p;

HAANAERAFRRIEECE . ST AR SA N EIR(i=1,2). S;FRCIFR
Mok H.
BB R s BRSO R ECA . R e PRARDR L A B L

S4 = A3N
S5 - d3NBg

S6:Nsi:(1_pi) (1—d)

3

S, = LDTNZ(l - Pi) (1 - di)
i=1

W =CN

Hrp S NI RAS | Sy A EAS . So AR K . SedRME S F . W RGBS 400
F b B8 B0 25 F O AR B AR AR P A -

w3,
i—3

LI A
Pi < Po

GX B d, yHIRr B E A SR, DoHIM B R & SR
5234 REH
FEIL— B A AR e S B 25 B (e vk SRR 1] DL B 5% 2D

10

B 7 EATHIL 1 Ak A TALE

[B SR G SR (4 R A AR LB 3% 3D+

o1 L2 B3 tE4 S Ele
d, 0 0 0 1 0 0
d, 0 0 0 1 1
d; 0 0 1 1 1
D, 1 1 1 1 1 0
|14 8.82 11.24 10.25 10.44 9.80 8.11
(W R 25 FEBO A BOAS B LAt Ak B i A)
B 8 S A LG 4 R s A
34
32
30
28
26
24
22
20
51 &R2 &3 54 &55 &6

AL, AERGR T E N AU DL, W AR SOk, A T
XF ARSI s R S AR AR B, R IR BT TR S

Mg TR, ToHeE

53 A= BERTHFHRELERER

5.3.1 fajfb B BE

11

AR BT B B I i R HRLE

BEXT R =, SR T —Bhoy SRR 93 25 BRI TR A B e m TE TP Al n A
TR R A R L A I 2 A L R R RS RS, TR iy
P EEOP IR TR S, B AR O o O T I N B R
IR, 3 1 RS R, TR AT T SORSE R THSRCR o E VPG IRk
AMFRCAFPRERNS, ST -2 SORSR SR P . SR SR RIS R
FRARIZ BT I LIS, oD 7 252 A B AR AR . - AL B AR
[l AT BE AN IS, S8 BN RIS (0) jBUT 4, BB HE) B R 2R 5. i I
SESR, REUSAT RO B A AL 7 DR SR A, I e A5 Y S B S5 R A Oy

%o

B 9 A =nAL R

(mETHF)

A 4

UIEE B AW

\ 4

SRS

RO SIS
iAbFR

EXT () ik
St Ab B

> g)
5.3.2 HiEabE

TE AP 0] 8 =B, P RO A 2H 2 Y B)t AR A T i Y SR A 4 2
B R R, T2 A A F . R B n) J N 2 AN, IRk
PR R, 75 VSR AR BN A2 B i i S R DU A S, TS
TEA, RAFATHE, B2 2 NP8\ NERARR TSR, BE GRS
SRY REEME L. nNEE:

12

P B 1R A A -

P2:A3N
P3:d3NBg

P4:Nsi(1_pi)(1_di)

3
P5:LDTNZ(1_pi) (l_di)
i=1
5 k
GN — ZPz - Zsk
i—1 i—1

Foh Gy R R I TR oA, N=1,2, ..., [2%}

F 1 -
N
W=CN—Y Gy
i=1

PRI CGED b I 5N DR 2 3K

HMm=twaWMD
> P(BIA)P(A)
533 &R0
BR S (45 RA AR DB SR 3)
pexay Rl EEN R EFR
T 1 0 Rl 1 0 0
T 2 1 e Rl 2 0 0
ERCAE 3 1 Rl 3 0 0
ERCAE 4 0 F A 1 0
ERCLAE S 1
EHCAE 6 1
A 7 1
EHCAE 8 1

Sof B PR B 7N LR AS - 49.23.

13

B 10 0=t 47

°
° 0.45
0.45
° °
° °
- 0.40
0.40
oo o °
ass] © © o0 oo oo 0.35
z o o o o © o z
3 © o oo o 8
8 030 ®oo0o 00 © o ® o w 0308
- o o o o oco® oo &
v ol
£ o o 0 0o o ° o g
0.25 - 0.25
® o o o o oo :
° o ° °
0.20 o ° oo
-0.20
° o
o o °
0.15
e 0.15
o

T T T T T
70 75 80 85 90

Total Cost

IR emIE TR it SRR R, AR R = R B Fe B
o L 9 R 258 A R e

iR WL
JOmF | KR | Rl A
10% 8 1.375
Fr A 0 1] i«
VTS R RN AS ar il Bl A e o H
10% 8 4 6
Bt
POmFE | BEONA | FIECR | RS | B | Rk
10% 8 4 6 25n 5n

W Am=3, n=4 i, "TUMSHR/NEAN: 56.65 76, (45 F A4 BACHD WL
K 3)

5.4 Y. AN e PSR A AR Y

5.4.1 Hf e Ak

AP, VR R AN 5 M R AR 1 22 A7 A0 5K (v 0] R =R T B
Pl o X — m) B AZ O RN R T AT S, 75 E A 5 A B 1) iR 2 AT
I3HT, BAREE T LR SR N R . O T N IR BN e PR, T DO R R —
N FAFR I, DS R B A X .

YT LBRIE LR 24, AT LB R A LR A A S R . X8 K B
WA ESAE PP BA I N — AR IR ST L, T PR R R 44, {5
75 e SR 3 R B e SR S

FRYE

|P _P0|

V%FTE

14

[po(1— 1—
E(pO—Z~ pO(np0>,Po+Z‘ Po(npo))

5.4.2 EFTRFEAR] LA 1]

Kk Ep BN —ANEEX .

BB Fpy = 0.1, JFHANMESE K AEE r = 99%, ARAIA Z HA
2.576 RIS D 73R E AR AR T BAS XA K A3 .
i) — R IR 25 i E . ne (10, 160)

CIESE

pe (0.1 —0.06269088936839551, 0.1 + 0.06269088936839551)

AR IR WA 11:
B 1lpAEANHRE

— ES5%H
64 *10Xi
- 19

1
]
]
]
)
I
I
1
1
]
1
I
1
]
|
]
1
1
I
I
I
I
I
}
]
}
I
I
1
]
]
1
)
I
1
I
1
]
1
|
|
T

pl&

f@ 2%@ 3%&@#*%@?

def apply_defect_rate_with error(defect rate, error_range=0.06269088936839551): 10 usages
(EHIERS AT TIER)

return np.Pandom.normal(defect_rate, error_range / 2)

S B IR a8 g5) (b fE 45 S AR A AL 25 LR % 3D
0 1 T 2 &5 3 T 4 T 5 5 6

d, 0 0 0 1 0 0
d, 0 0 0 1 1 0
ds 0 0 1 1 1

D, 1 1 1 1 1 0
w 8.78 11.26 10.38 10.54 9.76 8.40

15

B 12 14 IR i 89 55 Ab I SLAY 4 Ak s A i

34

32

30
28
26
24
22

20

w1 R MRS R4 MRS fERe
FHHAB IR B i = 55 R

72 AN il &

I
Sh
=

T 1 0 2o 1 0
FEIA 2
T 3
EIAT 4
EAF 5
FEA 6
FEA 7
FCA: 8 1
X L PR P 38 B /N e AR - 51,34,
HWiAm=3, n=4 i, HNFNEN: 57.14.
W Am=4, n=8 W}, F/PNFIEAN: 75.33.
B 13 mB2 6, FUERKn e TSR

- O

S~ O O

—_ = = O = =
s
il
—

56
54
52
50
48
46
44
42

40
1 2 3 4 5 6 7 8 9 10 11

fEh 2, Rl Ty ESm. R Eon 5 1 =400 A .

16

3d pot

l .

- 120
- 100
80

60

I>40

5.4.3 RESW
T 10, SRALMERAGTEE

gﬂ%ﬁk@ﬁﬁ%ﬁxﬁ?ﬁﬁ(%»h)a (X2, ¥2)s - (X,) AP = bx +a

n

) Z(%_E) (yi_ y)
b: i=1 .
Z(mi_E)Q
a=7y—bz
k2
E=Y—y
T

W=238.64 +1.46n
WA, /b =ik, SRR, 4P ImiG .
W=0+Bim+pBan
F A BT X s /D ik i
W=X-3

HApdERE X Z2EE mun MELI 1 M, B = [Bo, Br, B2 NEIH R LA
B, W NHEEOHE.

17

m; 1
mo Mo 1
X=|.
my Ny 1

W= [wl, w27“'7wN]T
X B:
B=(X"X)'X"W

MK H B, 2 By i Bao
B2

w=12.1271m +1.5870n +13.8672
2l H P i A -

3D Linear Regression Plane

e Data Points

| r 160

T 140
T 120
4 100
4 80

18

w

PRENHTUR R
MR G e £

1

0.8
0.6
04 T T
0.2 * T . H ’ $) ! ;
; N Lo
0.2 . s s 8
04 . : : :
06 :
08 . .
1
=R R

3D residual analysis plot

CRRZE M1 (0 T T R 2B AR L PR)

7Sy IRBEVNITN SHET

6.1 BT R

>

RiE e, ATRGEA RO, AR, AREOEHE, a4 ha
BERRSR, BRI LR AR S A

F B RS =R, KPR B E TR, Rl R C 2 A IR g 2) 25
YRR e B AF AL idh A, 38 FH AL B B AR R H A Y

FIEENE . IE RS EAR, BT 1A R T B Al R SR)
AT AR B, VR 2 PR ESREIEAT SR € B AR, R m] LA

19

FEAT 73 AT AT RAE, BN RE

> ENERR. BT DORYE R EOR R ENE, BaniE e SRR B, ORI TS AS
RIFEHIIL .

> Al R RATT AR AR AR IR AT R AL, T B ER A AR 2k R A L
FEE AR GE

6.2 FEATY IR R

> R SERREE SRR, WA BRI FESCPRAE AR T I R A 2R
AR, R EHER S, AEERIE T HEAEL

> RO R I HEI . LR TR A RO A R, AR
RIX IR HAT IR, SRS RIT%,

6.3 LAY Iy Bk
SINSZIBOE S, sl A AL A B S, SRR R T 3 BRI B e R
6.4 TR HE

G AT DL B A AU, ARl A s I 5 2 15 [P E < fh
ERBEE Ao TR R BB 3 T LAHES B e AR R, AR 4R
5 R IR R R AR o

£ SEE

(1 52 4. R IR 2 YR R 7 Bk 28 L Ao 3 8 &7 3 U B DU 1 B2 FH [D]. R K
#,2006. 2R, 2l 4 ZR AL AR I IR 5 vh 4 FE IR R AN IR 2E R R IEE R 4)
PR BEEE Y A FH I E R R R, 1335-1345, 2019,

(210 EL AR, B PR Ay DM 2 LA 46 A T Bk 22 A Ml 1) — b edgidk D7 5 (0] DO 5 4%
#11,2009,16(08):36-39. X1 FH , 2541 . & 3R AL B & H 2RI IE 1] £ S A5, 1-
42019,

[BIx A&, &' 7k U 4R 25 g T 3 A D T B0 RE 7 R I A (D], B AN 4 Ak
J& ,2019,21(05):33-39.DOI:10.13969/j.cnki.cn31-1893.2019.05.005. F£ 37 il . ¥ 1 4>

20

Bifs% 1

Z KB PR R

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
-2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
-24 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
-2.2 .0139 0136 .0132 .0129 .0125 .0122 .0119 0116 .0113 .0110
-2.1 .0179 .0174 .0170 0166 .0162 .0158 .0154 .0150 .0146 .0143
-2.0 .0228 0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
-1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
-1.8 .0359 0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
-1.7 .0446 0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
-1.5 .0668 0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
-1.4 .0808 .0793 .0778 .0764 .0749 .0735 0721 .0708 .0694 .0681
-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
-1.2 .1151 1131 1112 .1093 1075 .1056 .1038 .1020 .1003 .0985
-1.1 .1357 1335 (1314 .1292 1271 .1251 .1230 1210 .1190 .1170
-1.0 .1587 1562 .1539 1515 .1492 .1469 .1446 1423 .1401 1379
-09 .1841 1814 .1788 1762 1736 1711 1685 .1660 .1635 1611
-0.8 .2119 2090 .2061 .2033 .2005 1977 .1949 1922 .1894 .1867
-0.7 .2420 2389 .2358 2327 .2296 2266 .2236 .2206 .2177 2148
0.6 .2743 2709 .2676 2643 2611 .2578 .2546 2514 .2483 2451
-0.5 .3085 3050 .3015 .2981 .2946 2912 2877 .2843 .2810 2776
0.4 .3446 3409 3372 .3336 .3300 3264 3228 3192 .3156 3121
-0.3 .3821 3783 .3745 3707 .3669 3632 .3594 3557 .3520 .3483
0.2 4207 4168 4129 .4090 .4052 4013 3974 .3936 .3897 .3859
0.1 .4602 4562 4522 4483 4443 4404 4364 4325 4286 4247
0.0 .5000 4960 .4920 .4880 .4840 4801 4761 4721 4681 4641

21

b4 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 5239 5279 .5319 .5359
01 5398 5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 5753
0.2 5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
03 6179 6217 6255 6293 6331 .6368 .6406 .6443 .6480 .6517
04 .6554 6591 .6628 .6664 .6700 6736 .6772 .6808 .6844 .6879
0.5 6915 6950 .6985 7019 7054 .7088 .7123 7157 7190 7224
06 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
07 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
08 .7881 .7910 .7939 7967 .7995 .8023 .8051 .8078 .8106 .8133
09 8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 8665 .8686 .8708 .8729 8749 8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 9032 .9049 9066 .9082 .9099 .9115 9131 9147 9162 .9177
14 9192 9207 9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 9332 9345 9357 9370 .9382 .9394 9406 .9418 .9429 9441
1.6 .9452 9463 .9474 9484 9495 9505 .9515 9525 .9535 .9545
17 9554 9564 9573 9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 9641 9649 9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
19 9713 9719 9726 9732 9738 9744 9750 9756 .9761 .9767
20 9772 9778 9783 .9788 9793 9798 .9803 .9808 .9812 .9817
21 9821 9826 .9830 .9834 9838 .9842 9846 .9850 .9854 .9857
22 9861 9864 .9868 .9871 .9875 9878 .9881 .9884 .9887 .9890
23 9893 9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
24 9918 .9920 .9922 .9925 9927 .9929 9931 .9932 .9934 .9936
25 9938 .9940 .9941 9943 9945 9946 .9948 .9949 .9951 .9952
26 9953 9955 9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
27 9965 9966 9967 .9968 .9969 9970 .9971 9972 .9973 .9974
28 .9974 9975 9976 .9977 .9977 .9978 9979 9979 .9980 .9981
29 9981 9982 9982 .9983 .9984 .9984 9985 9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
31 9990 9991 .9991 .9991 .9992 9992 .9992 9992 .9993 .9993
3.2 9993 9993 9994 .9994 .9994 9994 .9994 9995 .9995 .9995
33 9995 9995 .9995 9996 .9996 .9996 .9996 .9996 .9996 .9997
34 9997 9997 9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

22

M1k 2

[6 i DL) PR

Decision Tree for Case 2

Decision Tree for Case 3

Decision Tree for Case 4

Decision Tree for Case 5

AN e W

Decision Tree for Case 6

24

B 3
[R — B SR A

import numpy as np
import scipy.stats as stats
if _ _name__=="__ mai "
KR
p_nominal = 0.10

0.95 # S
0.90 # BWUSE

confidence_reject
confidence_accept

Z BRI FHE
z reject = stats.norm.ppf(confidence reject) # 95 #HlIX Z
Zz_accept stats.norm.ppf(1 - confidence_accept) # 90%

Eik z

tolerance = 0.01 # +1%MFah

BENLAEE
def perform_test(n_samples, p_nominal, z_reject=None,
z_accept=None, num_trials=10000, fluctuation=0.01):
reject_count = 0
accept_count (%]

for _ in range(num_trials):

)

p_fluctuated
fluctuation, fluctuation)

p_fluctuated

ORI ZRAE [0, 1] JEHIN

p_nominal + np.random.uniform(-

max(0, min(1, p_fluctuated)) #

R HITEIE
defective _samples =
np.random.binomial(n_samples, p fluctuated)

#OFEA IR
p_sample = defective_samples / n_samples

FHUR

if z_reject is not None:
25

z_value_reject = (p_sample - p_nominal) /
np.sqrt(p_nominal * (1 - p_nominal) / n_samples)
if z_value_reject > z_reject:
reject_count += 1

420
if z_accept is not None:
z_value_accept = (p_sample - p_nominal) /
np.sqrt(p_nominal * (1 - p_nominal) / n_samples)
if z_value_accept < z_accept:
accept_count += 1

return reject_count, accept_count

%%
def find_sample_size reject(p_nominal, z_reject,
min_n=10, max_n=200, step=1, num_trials=10000, tolerance=0.01,
fluctuation=0.01):
sample_sizes = []

for n_samples in range(min_n, max_n, step):
reject_count, _ = perform_test(n_samples,
p_nominal, z_reject=z_reject, z_accept=None,

num_trials=num_trials,
fluctuation=fluctuation)
reject_rate = reject_count / num_trials

print(f"FEAE: {n_samples}, FHULELHI:
{reject_rate:.4f}")

FEA
if abs(reject_rate - 0.05) <= tolerance:
sample _sizes.append(n_samples)

10 MHUAE
if len(sample sizes) >= 10:
avg _sample size = np.mean(sample_sizes)
print (f"3l IR IFEARE N :
{sample_sizes}")

print (f" RICFEASE KT IE N -

26

{avg_sample_size}")
return avg_sample_size

print ("RILBETE IFEA R LB,)

return None

42k
def find _optimal_sample_size(p_nominal, z_accept,
min_n=10, max_n=200, step=1, num_trials=10000,
tolerance=0.01):
sample_sizes = []

for n_samples in range(min_n, max_n, step):
_, accept_count = perform_test(n_samples,
p_nominal, z_accept=z_accept, num_trials=num_trials)

accept_rate = accept_count / num_trials

print(f"FEAE: {n_samples}, #ZUtbfl: {1-
accept_rate:.4f}")

KAEE)
if abs(accept_rate - 0.10) <= tolerance:
sample sizes.append(n_samples)

HE| 10 MTE KRR ER, BOFEE
if len(sample_sizes) >= 10:
avg _sample _size = np.mean(sample_sizes)
print (£" i C BRI RIREAE Y
{sample_sizes}")
print (f"HICHEARERTHEN:
{avg_sample_size}")
return avg_sample_size

print (" ARILBLE FIFEAS B L R,)

return None

optimal_sample size reject =
find_sample_size reject(p_nominal, z_reject)

optimal_sample size accept =
find_optimal_sample size(p_nominal, z_accept)

27

i L R A
import random
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from sklearn import tree

0 CEBCAF ARG)2
class Part:
def __init_ (self, defect_rate, purchase_price,
detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

class FinalProduct:
def _init_ (self, defect_rate, assemble cost,
detection_cost, market_price, exchange_loss,
disassemble cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.market_price = market_price
self.exchange_loss = exchange_loss
self.disassemble cost = disassemble_cost

G NRZERI R
def apply _defect_rate with_error(defect_rate,
error_range=0.02):
return defect_rate + random.uniform(-error_range,
error_range)

UFEERRARE, IIANRE
def calculate_total cost(case, detect partl=True,
detect_part2=True, detect_final=True, disassemble=True,
error_range=0.02):
partl = case["ZEiH 1"]
part2 = case["ZEHiH 2"]

final_product = case["/&fh"

28

R ZE 5 I i
partl_defect =

apply defect_rate with_error(partl.defect_rate, error_range)
part2_defect =

apply defect_rate_with_error(part2.defect_rate, error_range)
final_defect =

apply defect_rate_with_error(final_product.defect_rate,

error_range)

AW ERMERSE
partl _pass = random.random() > partl_defect
part2_pass = random.random() > part2_defect

MBREEMA—DFRAEAER, Bl EA G
if not partl_pass or not part2_pass:
final_pass = False
else:
WARWADERCAFASH, BORIE SRR 2T S

final_pass = random.random() > final defect

THSER I RRA
detection_cost = ©
if detect_partl:
detection_cost += partl.detection_cost
if detect_part2:
detection_cost += part2.detection_cost
if detect_final:
detection_cost += final product.detection_cost

THEISE A

assemble_cost = final_product.assemble_cost

TSR A R
market_loss = 0
if not final_pass and not detect final:
market_loss = final_product.exchange loss * (1 -
final pass)

THEIVE T B R AR K
disassemble cost = ©
if not final_pass:
if disassemble:
disassemble_cost =

29

final_product.disassemble_cost
else:
scrap_cost = final_product.assemble cost * (1 -
final_pass)
disassemble_cost = scrap_cost

total _cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

AR, T IRk SRR ALY
def generate_simulation_data(case, num_samples=1000,
error_range=0.02):
X =[] # FfE&ES
y = [1 # BA&%ES

for _ in range(num_samples):
for detect_partl in [True, False]:
for detect_part2 in [True, False]:
for detect_final in [True, False]:
for disassemble in [True, False]:
A B R R E AT AR 25
total _cost =
calculate_total cost(case, detect_partl, detect _part2,
detect_final, disassemble, error_range)
X.append([detect_partl, detect_part2,
detect_final, disassemble])
y.append(total_cost)

return np.array(X), np.array(y)

R 1B SFRE O
cases = [
{
"EEHF 1" Part(e.10, 4, 2),
"EHME 2" Part(e.10, 18, 3),
"Rfm": FinalProduct(@.10, 6, 3, 56, 6, 5)

"EEAFE 1" Part(0.20, 4, 2),
"EEE 2" Part(0.20, 18, 3),
"WAn": FinalProduct(e.20, 6, 3, 56, 6, 5)

30

{

"EWAE 1" Part(e.10, 4, 2),

"ZRLLE 2" Part(e.10, 18, 3),

"Hf": FinalProduct(e.10, 6, 3, 56, 30, 5)
}J
{

"EWAE 1" Part(0.20, 4, 1),

"ZRLLE 2" Part(0.20, 18, 1),

"Hom": FinalProduct(e.20, 6, 2, 56, 30, 5)
}J
{

"EWAE 1" Part(e.10, 4, 8),

"EREE 2" Part(e.20, 18, 1),

"B ": FinalProduct(®.10, 6, 2, 56, 10, 5)
})
{

" 1" Part(0.05, 4, 2),

" 2" Part(0.05, 18, 3),

"B s FinalProduct(@.05, 6, 3, 56, 10, 40)
¥

]
(AR T KBRS case IIRALAR

def optimize case(case, case_index):
A R

X, y = generate_simulation_data(case, num_samples=1000)

A DR [Y A Y
tree_reg = DecisionTreeRegressor(max_depth=5)
tree_reg.fit(X, y)

PIAAL R

feature_names = ['Detect Partl', 'Detect Part2',
'Detect Final', 'Disassemble’]

visualize decision_tree(tree_reg, feature_names,
case_index)

RPN HRAE B/ AR R AL TN R 5K
predicted_costs = tree_reg.predict(X)

R R

min_cost_index = np.argmin(predicted _costs)
optimal decision = X[min_cost_index]

31

return optimal_decision,
predicted_costs[min_cost_index]

AR matplotlib
def visualize decision_tree(tree_reg, feature_names,
case_index):
plt.figure(figsize=(20,10))
tree.plot_tree(tree_reg, feature_names=feature_names,
filled=True)
plt.title(f'Decision Tree for Case {case_index}")
plt.savefig(f"decision_tree_case_ {case_index}.png") #
TRAF 9
plt.show()

P NFE L, AR NME LR B ST AT AL
for i, case in enumerate(cases):
optimal decision, min_cost = optimize_case(case, i+l)
print(f"f&54L {i+1} BIEPLRSE: FECAF 1 A
{bool(optimal decision[@])}, FHALF 2 #l:
{bool(optimal decision[1])}, FfhHGi:
{bool(optimal_decision[2])}, #¥fi#:
{bool(optimal decision[3])}")
print (F" XM H/NAS A : {min_cost:.2f}\n")

A jE = 2 38 17 8 NEELAFIIKR AR
import random
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from sklearn import tree
from joblib import Parallel, delayed

0 CEBCAFAT R 2R
class Part:
def __init_ (self, defect_rate, purchase_price,
detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

32

class SemiProduct:
def __init_ (self, defect_rate, assemble cost,
detection_cost, disassemble_cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.disassemble cost = disassemble_cost

class FinalProduct:
def __init_ (self, defect_rate, assemble cost,
detection_cost, market_price, exchange_loss,
disassemble cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.market_price = market_price
self.exchange_loss = exchange_loss
self.disassemble cost = disassemble_cost

5l NARZE R
def apply defect_rate _with_error(defect_rate,
error_range=0.02):
return defect_rate + random.uniform(-error_range,
error_range)

TFE MR DU SRR
def bayesian_final defect_rate(semi_products,
final product_defect_rate, error_range=0.02):
total_defect_rate =1
for sp in semi_products:
sp_defect_rate =
apply_defect_rate_with_error(sp.defect_rate, error_range)
total _defect_rate *= (1 - sp_defect_rate)
final_defect_rate =
apply defect_rate_with_error(final_product_defect_rate,
error_range)
total _defect_rate *= (1 - final_defect_rate)
return 1 - total defect_rate

33

UFE BN, A RE

def calculate_total cost(case, detect_partl=True,
detect_part2=True, detect_part3=True,
detect_part4=True,
detect_part5=True, detect_part6=True,
detect_part7=True,

detect_part8=True,

detect_semil=True,
detect_semi2=True, detect_semi3=True,

detect_final=True,

error_range=0.02):

partl = case["ZEfitf 1"]
part2 = case["ZEftf 2"]
part3 = case["ZEfitf 3"]
partd = case["ZEfitf 4"]
part5 = case["ZEfitf 5"]
part6 = case["ZEfitft 6"]
part7 = case["ZEfitf 7"]
part8 = case["ZEfitf 8"]
semil = case[" 1"]
semi2 = case["=Flihm 2"]
semi3 = case["F/lihn 3"]

disassemble=True,

final_product = case["fMh"
R ZE S I 2
partl_defect =
apply_defect_rate_with_error(partl
part2_defect =
apply_defect_rate_with_error(part2.
part3_defect =
apply_defect_rate_with_error(part3.
part4_defect =
apply defect_rate_with_error(part4
part5_defect =
apply_defect_rate_with_error(part5.
part6_defect =
apply_defect_rate_with_error(part6.
part7_defect =
apply_defect_rate_with_error(part?7
part8 defect =
apply_defect_rate_with_error(part8.

.defect_rate, error_range)

defect_rate, error_range)

defect_rate, error_range)

.defect_rate, error_range)

defect_rate, error_range)

defect_rate, error_range)

.defect_rate, error_range)

defect_rate, error_range)

ERO IR
semil defect = 1 - ((1 - partl_defect) * (1 -

34

part2_defect) * (1 - part3_defect))

semi2_defect = 1 - ((1 - partd_defect) * (1 -
part5 _defect) * (1 - part6_defect))

semi3 _defect = 1 - ((1 - part7_defect) * (1 -
part8 defect))

AW ERMERSE

semil pass random.random() > semil defect
semi2_pass random.random() > semi2_defect
semi3_pass random.random() > semi3_defect

IMBREEFA RS AER, Bl E A%

if not semil_pass or not semi2_pass or not semi3_pass:
final_pass = False

else:
ARG E S, AR F O R RE 2T SR
final _defect = bayesian_final_defect_rate([semil,

semi2, semi3], final_product.defect_rate, error_range)

final_pass = random.random() > final defect

THSER I RA
detection_cost = ©
if detect_partl:

detection_cost += partl.detection_cost
if detect_part2:

detection_cost += part2.detection_cost
if detect_part3:

detection_cost += part3.detection_cost
if detect_part4:

detection_cost += part4.detection_cost
if detect_parts:

detection_cost += part5.detection_cost
if detect_parté6:

detection_cost += part6.detection_cost
if detect_part7:

detection_cost += part7.detection_cost
if detect_parts8:

detection_cost += part8.detection_cost
if detect_semil:

detection_cost += semil.detection_cost
if detect_semi2:

detection_cost += semi2.detection_cost
if detect_semi3:

detection_cost += semi3.detection_cost

35

if detect_final:
detection_cost += final product.detection_cost

TFEAR A A

assemble_cost = semil.assemble_cost +
semi2.assemble_cost + semi3.assemble_cost +
final_product.assemble cost

THE T A5 R
market_loss = ©
if not final_pass and not detect_final:
market_loss = final_product.exchange loss * (1 -
final_pass)

TFEIVR T Bk R AR K
disassemble_cost = ©
if not final_pass:
if disassemble:
disassemble_cost =
final_product.disassemble_cost + semil.disassemble_cost +
semi2.disassemble_cost + semi3.disassemble cost
else:
scrap_cost = final_product.assemble cost * (1 -
final pass)
disassemble_cost = scrap_cost

total cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

A B ER RE GFRAT 40P
def generate_simulation_data(case, num_samples=1000,
error_range=0.02):
def generate_sample():
X =[]
y =[]
for detect_partl in [True, False]:
for detect_part2 in [True, False]:
for detect_part3 in [True, False]:
for detect_part4 in [True, False]:
for detect_part5 in [True, False]:
for detect_part6 in [True,
False]:

36

for detect_part7 in [True,
False]:
for detect_part8 in [True,
False]:
for detect_semil in
[True, False]:
for detect_semi2 in
[True, False]:
for
detect_semi3 in [True, False]:
for
detect_final in [True, False]:
for
disassemble in [True, False]:

total _cost = calculate_total cost(

case, detect_partl, detect_part2, detect_part3,
detect_part4, detect_part5, detect_parté,
detect_part7, detect_part8,

detect_semil, detect_semi2, detect_semi3,
detect_final, disassemble, error_range)
X.append([detect_partl, detect_part2, detect part3,
detect_part4, detect_part5, detect_part6,
detect_part7, detect_part8,

detect_semil, detect_semi2, detect_semi3,
detect_final, disassemble])

y.append(total_cost)
return np.array(X), np.array(y)

fHH joblib FFAT4EMEHE
results = Parallel(n_jobs=-
1) (delayed(generate_sample)() for _ in range(num_samples))

37

GIFAR
X = np.vstack([r[@] for r in results])
y = np.hstack([r[1] for r in results])

return X, y

% 2 (AR
case3 = {
"EWAE 1" Part(e.10, 2, 1),
"EHCHF 2" Part(e.10, 8, 1),
"EWCAE 3" Part(0.10, 12, 2),
"EWCAE 4" Part(0.10, 2, 1),
"EWAE 5" Part(0.10, 6, 1),
"EWE 6": Part(e.10, 8, 1),
"EWAE 7" Part(0.10, 6, 1),
"EWAE 8" Part(e.10, 2, 1),
"H%h 1": SemiProduct(@.10, 3, 2, 5),
"L 2" SemiProduct(e.10, 3, 1, 2),
" 3": SemiProduct(@.10, 3, 2, 5),
"Bim": FinalProduct(e.1e, 3, 4, 50, 1o, 10),
¥

BB

X, y = generate_simulation_data(case3)

A ORI A Y
model = DecisionTreeRegressor()
model.fit(X, y)

AIAAL SRR

plt.figure(figsize=(20, 10))

tree.plot_tree(model, filled=True, feature_names=[
'Detect Part 1', 'Detect Part 2', 'Detect Part 3°',
'Detect Part 4', 'Detect Part 5', 'Detect Part 6°',
'Detect Part 7', 'Detect Part 8',
'Detect Semi 1', 'Detect Semi 2', 'Detect Semi 3°',
'‘Detect Final', 'Disassemble’'])

plt.show()

8] /8 = m 38 TP n NFECER AR
import random
import numpy as np

38

0 SCEBCAE o Ta) Rt A0 s it R 28
class Part:
def __init_ (self, defect_rate, purchase_price,
detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

class SemiProduct:
def __init_ (self, defect_rate, assemble cost,
detection_cost, disassemble_cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.disassemble cost = disassemble_cost

class FinalProduct:
def _init_ (self, defect_rate, assemble cost,
detection_cost, disassemble cost, market_price,
exchange_loss):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.disassemble cost = disassemble_cost
self.market_price = market_price
self.exchange_loss = exchange_loss

TR AR R
def calculate_total cost(parts, semi_products,
final _product, detect_flags):

THELE AR ARSI I 3
part_passes = [random.random() > part.defect_rate for
part in parts]

ARAE 2O Ao N0 368 T 3 T 550 v] it) A
semi_passes = [
parts_per_semi = len(parts) // len(semi_products)
for i, semi in enumerate(semi_products):
start = i * parts_per_semi
end = start + parts_per_semi
semi_passes.append(all(part_passes[start:end]) and
(random.random() > semi.defect_rate))

39

THEGT IR R
final pass = all(semi_passes) and (random.random() >
final product.defect_rate)

THSERI RRA

detection_cost = sum(part.detection_cost for part, flag
in zip(parts, detect_flags[:len(parts)]) if flag)

detection_cost += sum(semi.detection_cost for semi,
flag in zip(semi_products,
detect_flags[len(parts):len(parts)+len(semi_products)]) if
flag)

if detect_flags[-2]:

detection_cost += final product.detection_cost

TFEAR A A
assemble_cost = sum(semi.assemble_cost for semi in
semi_products) + final product.assemble_cost

THE T A R

market_loss = 0

if not final pass and not detect_ flags[-2]:
market_loss = final_product.exchange_ loss

TFEIVR T Bk R AR K
disassemble_cost = ©
if not final_pass:
if detect_flags[-1]:
disassemble_cost =
final_product.disassemble_cost
else:
scrap_cost = final_product.assemble_cost
disassemble_cost = scrap_cost

total cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

AERCEECE bR R R i R SE A5
def generate_case(m, n):
parts = [Part(@.10, 8, 1.375) for _ in range(n)]
semi_products = [SemiProduct(0.10, 8, 4, 6) for _ in
range(m)]
final _product = FinalProduct(e.10, 8, 4, 6, 25 * n, 5 *

40

return parts, semi_products, final_ product

B A IR
def simulate_ production(m, n, simulations=1000):
parts, semi_products, final product = generate_case(m,
n)
detect_flags = [True] * (n + m + 2) # FrF KACIAISFRELS
HHWEN True

total_costs = []
for _ in range(simulations):
total _cost = calculate_total cost(parts,
semi_products, final product, detect_flags)
total costs.append(total cost)

average_cost = np.mean(total costs)
return average_cost

i\ mAln
m = int(input("ERAF AR (n): "))
n = int(input ("B AFEAMEE (nD: "))

IZATHAY

average_cost = simulate_production(m, n)

print(f"%F F{m}ETF. {n}PZEAFFT S RAN:
{average_cost:.2f}")

[FLY p [XTa))
import numpy as np
import scipy.stats as stats

PEASE AR LB H s
sample_sizes = np.array([
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,

41

88, 89,

103,

116,

129,

142,

155,

99, 91, 92, 93, 94,

104,

105, 106,
117,

118, 119,
130,

131, 132,
143,

144, 145,
156,

157, 158,

D

acceptance_ratios

1.0000, 1.

9.8261, 0.8506,

0.8684, 0.

0.9366, 0.9364,

9.9457, 0.

0.8785, 0.8828,

9.8938, 0.

0.9427, ©.9457,

0.9480, 0.

0.9048, 0.9151,

9.9160, O.

9.8732, 0.8806,

0.8887, 0.

9.9336, 0.9329,

0.8626, 0.

9.9107, 0.9143,

9.9200, 0.

0.8845, 0.8911,

9.8981, O.

9.9336, 0.8734,

9.8739, 0.

9.9105, 0.9188,

©.9239, 0.

©.8995, ©.9027,

©.9075, 0.

0.8825, ©.8890,

0.8922, 0.

0.9262, 0.8605,

0.8817, 0.

107,

120,

133,

146,

159,

0000,

8791,

9478,

9050,

8532,

9307,

8971,

8750,

9190,

9089,

8864,

9302,

9109,

8977,

8817,

108, 109,

121, 122,

134, 135,

147, 148,

160, 161,

110, 111,

123, 124,

136, 137,

149, 150,

162, 163

np.array([

1

.0000,

.8913,

.9565,

.9126,

.8701,

.9344,

.9049,

.8806,

.9318,

.9068,

.8911,

.8729,

.9142,

.8986,

.8809,

1.0000, 1.

9.9039, 0.

9.9605, 0.

9.9208, 0.

9.8802, O.

9.9371, O.

9.9111, O.

9.8891, O.

9.9308, 0.

9.9144, 0.

9.8953, 0.

0.8779, 0.

©.9193, 0.

©.9067, 0.

©.8921, 0.

42

95, 96, 97, 98, 99,

112,

125,

138,

151,

0000,

9095,

8406,

9264,

8828,

9378,

9177,

8881,

8640,

9200,

9013,

8835,

9232,

9089,

8967,

100,

113,

126,

139,

152,

9.7959, 0.

9.9153, 0.

9.8562, 0.

9.9328, 0.

9.8933, 0.

0.8564, 0.

9.9245, 0.

9.8953, 0.

9.8797, O.

9.9226, 0.

9.9086, 0.

©.8859, 0.

0.8739, 0.

©.9135, 0.

©.8982, 0.

101,

114,

127,

140,

153,

102,

115,

128,

141,

154,

8116,

9251,

8725,

9370,

8981,

8661,

9240,

9002,

8846,

9300,

9100,

8905,

8729,

9230,

9092,

9.9117, 0.9109,

9.9226, ©.9227, ©.8723, 0.8836, 0.8815, 0.8865, 0.8901,
9.8978, 0.9016,

0.9079, 0.9076, ©.9085, 0.9124, ©.9189, 0.8747, 0.8809,
0.8844, 0.8857,

9.8938

D

z-score for 99% confidence
z = stats.norm.ppf(1 - 0.01/2)

Calculate the confidence intervals
confidence_intervals = []
for n, p_hat in zip(sample_sizes, acceptance_ratios):
se = np.sqrt(p_hat * (1 - p_hat) / n)
margin_of_error = z * se
confidence_interval = (p_hat - margin_of_error, p_hat +
margin_of_error)
confidence_intervals.append(confidence_interval)

Find the overall interval covering all the confidence
intervals

lower_bound

upper_bound

max([ci[@] for ci in confidence_intervals])
min([ci[1] for ci in confidence_intervals])

print(1-upper_bound)

[R DY) 2 F KA
import random
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from sklearn import tree

0 CEBCAFAT R 2R
class Part:
def __init_ (self, defect_rate, purchase_price,

detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

class FinalProduct:

43

def _init_ (self, defect _rate, assemble cost,

detection_cost, market_price, exchange_loss,
disassemble cost):

self.defect_rate = defect_rate

self.assemble_cost = assemble cost

self.detection_cost = detection_cost

self.market_price = market_price

self.exchange_loss = exchange_loss

self.disassemble cost = disassemble_cost

SINRZERE, B IE AR,
def apply_defect_rate _with_error(defect_rate,
error_range=0.06269088936839551):
A IR0 An HEAT V7 B AU

return np.random.normal(defect_rate, error_range / 2)

RS AR, IR
def calculate_total cost(case, detect_partl=True,
detect_part2=True, detect_final=True, disassemble=True,
error_range=0.02):
partl = case["ZEMCfF 1"]
part2 = case["ZEALHf 2"]

final_product = case[" /"

MR ZE S W %
partl_defect =
apply_defect_rate_with_error(partl.defect_rate, error_range)
part2_defect =
apply_defect_rate_with_error(part2.defect_rate, error_range)
final_defect =
apply defect_rate_with_error(final_product.defect_rate,
error_range)

HI R 0
partl_pass = random.random() > partl_defect
part2_pass = random.random() > part2_defect

MARFE—DEERAAAGH, BhDEANEK

if not partl_pass or not part2_pass:
final _pass = False

else:

44

WERPIDZRCATFALSAS, ARSI R e 2 B G

final pass = random.random() > final_defect

THSER I R A
detection_cost = ©
if detect_partl:
detection_cost += partl.detection_cost
if detect_part2:
detection_cost += part2.detection_cost
if detect_final:
detection_cost += final product.detection_cost

THEISE A

assemble_cost = final_product.assemble_cost

THE T I AR R
market_loss = ©
if not final_pass and not detect final:
market_loss = final_product.exchange loss * (1 -
final pass)

TFEIVE T Bk R AR K
disassemble_cost = ©
if not final_pass:
if disassemble:
disassemble_cost =
final_product.disassemble_cost
else:
scrap_cost = final _product.assemble cost * (1 -
final_pass)
disassemble_cost = scrap_cost

total cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

AEREIREE, FHT Uk R Y
def generate_simulation_data(case, num_samples=1000,
error_range=0.02):
X =[] # HEES
y = [1 # BA%ES

for _ in range(num_samples):

45

for detect_partl in [True, False]:
for detect_part2 in [True, False]:
for detect_final in [True, False]:
for disassemble in [True, False]:
A R R R E AT AR 25
total_cost =
calculate_total cost(case, detect_partl, detect_part2,
detect_final, disassemble, error_range)
X.append([detect_partl, detect_part2,
detect_final, disassemble])
y.append(total cost)

return np.array(X), np.array(y)

K% 1 WSHHFN
cases = [
{
"M 1" Part(0.10, 4, 2),
" 2" Part(0.10, 18, 3),
"Hm": FinalProduct(e.10, 6, 3, 56, 6, 5)

})
{

"EHE 1" Part(0.20, 4, 2),

"EHME 2" Part(0.20, 18, 3),

"Hdh": FinalProduct(e.20, 6, 3, 56, 6, 5)
})
{

"R 1" Part(e.10, 4, 2),

"R 2" Part(0.10, 18, 3),

"FAh": FinalProduct(0.10, 6, 3, 56, 30, 5)
})
{

"EEHF 1" Part(e.20, 4, 1),

"R 2" Part(0.20, 18, 1),

"RAh": FinalProduct(0.20, 6, 2, 56, 30, 5)
})
{

"EHM 1" Part(0.10, 4, 8),

"EHME 2" Part(0.20, 18, 1),

"Rish": FinalProduct(0.10, 6, 2, 56, 10, 5)
})
{

"EHME 1" Part(0.05, 4, 2),

46

"EHCH 2" Part(@.05, 18, 3),
"BAh": FinalProduct(e.05, 6, 3, 56, 10, 40)

]

ARSI G case HImILE
def optimize case(case, case_index):
A A A

X, y = generate_simulation_data(case, num_samples=1000)

A DR] YA Y
tree_reg = DecisionTreeRegressor(max_depth=5)
tree_reg.fit(X, y)

PR RS

feature_names = ['Detect Partl', 'Detect Part2',
'Detect Final', 'Disassemble’]

visualize decision_tree(tree_reg, feature_names,
case_index)

BALTIN . AR e/ AS (1 20 5 T ke S

predicted_costs = tree_reg.predict(X)

R
min_cost_index = np.argmin(predicted_costs)
optimal decision = X[min_cost_index]

return optimal_decision,
predicted_costs[min_cost_index]

AL ER A matplotlib
def visualize decision_tree(tree_reg, feature_names,
case_index):
plt.figure(figsize=(20,10))
tree.plot_tree(tree_reg, feature_names=feature_names,
filled=True)
plt.title(f'Decision Tree for Case {case_index}")
plt.savefig(f"decision_tree_case {case_index}.png") #
RAF N 7
plt.show()

MPINRIEOL, AR DU BRI RS AT AL

for i, case in enumerate(cases):

47

optimal _decision, min_cost = optimize case(case, i+1)
print(f"EHL {i+1} WEOLOLSE: FHCAF 1 A
{bool(optimal_ decision[@])}, FHLF 2 #&l:
{bool(optimal_ decision[1])}, FfshuHGi:
{bool(optimal_decision[2])}, ¥¥fiE:
{bool(optimal_ decision[3])}")
print (f" XTI/ A : {min_cost:.2f}\n")

] R T i 3 1 2 38 TP 8 N E IR AR
import random
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
from sklearn import tree
from joblib import Parallel, delayed

0E CEBCAT ARG)2
class Part:
def __init_ (self, defect_rate, purchase_price,
detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

class SemiProduct:
def __init_ (self, defect_rate, assemble cost,
detection_cost, disassemble cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.disassemble cost = disassemble_cost

class FinalProduct:
def init_ (self, defect_rate, assemble cost,
detection_cost, market_price, exchange_ loss,
disassemble cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.market_price = market_price

48

self.exchange_loss = exchange_loss
self.disassemble cost = disassemble_cost

SINRZERE, BRI AR,
def apply_defect_rate _with_error(defect_rate,
error_range=0.06269088936839551) :
A IR 70 A HEAT I B AU

return np.random.normal(defect_rate, error_range / 2)

THE AR DD 2 SRR
def bayesian_final defect_rate(semi_products,
final product_defect_rate, error_range=0.02):
total _defect_rate =1
for sp in semi_products:
sp_defect_rate =
apply_defect_rate_with_error(sp.defect_rate, error_range)
total _defect_rate *= (1 - sp_defect_rate)
final_defect_rate =
apply defect_rate_with_error(final_product_defect_rate,
error_range)
total _defect_rate *= (1 - final_defect_rate)
return 1 - total defect_rate

UFEERRARE, IANRE
def calculate_total cost(case, detect_partl=True,
detect_part2=True, detect_part3=True,
detect_part4=True,
detect_part5=True, detect_part6=True,
detect_part7=True,
detect_part8=True,
detect_semil=True,
detect_semi2=True, detect_semi3=True,
detect_final=True, disassemble=True,
error_range=0.02):
partl = case["ZEiH 1"]
part2 = case["ZEHiH 2"]
part3 = case["ZMH 3"]
part4 = case["ZEALH 4"]
part5 = case[" &4 5"]
parté = case["ZMH 6"]
part7 = case["ZEiH 7"]

49

part8 = case["Zficff 8"]
semil = case[" 1"]
semi2 = case[" 2"]
semi3 = case[" 3"]

final_product = case[" /"

R ZE 5 O i
partl_defect =
apply_defect_rate_with_error(partl.defect_rate,
part2_defect =
apply_defect_rate_with_error(part2.defect_rate,
part3_defect =
apply_defect_rate_with_error(part3.defect_rate,
part4_defect =
apply_defect_rate_with_error(partd4.defect_rate,
part5_defect =
apply_defect_rate_with_error(part5.defect_rate,
part6_defect =
apply_defect_rate_with_error(part6.defect_rate,
part7_defect =
apply_defect_rate_with_error(part7.defect_rate,
part8 defect =
apply_defect_rate_with_error(part8.defect_rate,

PRI R

semil _defect = 1 - ((1 - partl_defect) *
part2_defect) * (1 - part3_defect))

semi2_defect = 1 - ((1 - part4_defect) *
part5_defect) * (1 - part6_defect))

semi3_defect = 1 - ((1 - part7_defect) *
part8_ defect))

JIBr T2 TS

error_range)
error_range)
error_range)
error_range)
error_range)
error_range)
error_range)

error_range)

(1 -
(1 -

(1 -

semil_pass = random.random() > semil defect

semi2_pass
semi3_pass

WERATENT Db AN GRS, bbb E NG

random.random() > semi2_defect
random.random() > semi3 defect

if not semil_pass or not semi2_pass or not semi3_pass:

final pass = False
else:

WORPE ARG, A AR L U R R A TR S

final _defect = bayesian_final_defect rate([semil,

semi2, semi3], final product.defect_rate, error_

50

range)

final pass = random.random() > final_defect

THERI RA
detection_cost = ©
if detect_partl:

detection_cost += partl.detection_cost
if detect_part2:

detection_cost += part2.detection_cost
if detect_part3:

detection_cost += part3.detection_cost
if detect_part4:

detection_cost += part4.detection_cost
if detect_part5:

detection_cost += part5.detection_cost
if detect_parté6:

detection_cost += part6.detection_cost
if detect_part7:

detection_cost += part7.detection_cost
if detect_parts:

detection_cost += part8.detection_cost
if detect_semil:

detection_cost += semil.detection_cost
if detect_semi2:

detection_cost += semi2.detection_cost
if detect_semi3:

detection_cost += semi3.detection_cost
if detect_final:

detection_cost += final product.detection_cost

THEARAC A

assemble_cost = semil.assemble_cost +
semi2.assemble_cost + semi3.assemble_cost +
final_product.assemble cost

TSR A R
market_loss = 0
if not final_pass and not detect final:
market_loss = final_ product.exchange loss * (1 -
final pass)

THEIVE T B R AR K
disassemble _cost = ©
if not final_pass:

if disassemble:

51

disassemble_cost =
final_product.disassemble_cost + semil.disassemble_cost +
semi2.disassemble_cost + semi3.disassemble cost
else:
scrap_cost = final_product.assemble_cost * (1 -
final_pass)
disassemble_cost = scrap_cost

total cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

A B ER RE OFAT AP
def generate_simulation_data(case, num_samples=1000,
error_range=0.02):
def generate_sample():
X =[]
y =[]
for detect_partl in [True, False]:
for detect_part2 in [True, False]:
for detect_part3 in [True, False]:
for detect_part4 in [True, False]:
for detect_part5 in [True, False]:
for detect_parté6 in [True,

False]:
for detect_part7 in [True,
False]:
for detect_part8 in [True,
False]:

for detect_semil in
[True, False]:
for detect_semi2 in
[True, False]:
for
detect_semi3 in [True, False]:
for
detect_final in [True, False]:
for

disassemble in [True, False]:

total cost = calculate_total cost(

case, detect_partl, detect_part2, detect_part3,

52

detect_part4, detect_part5, detect_part6,

detect_part7, detect_part8,

detect_semil, detect_semi2, detect_semi3,

detect_final, disassemble, error_range)

X.append([detect_partl, detect_part2, detect part3,

detect_part4, detect_part5,

detect_part7, detect_part8,

detect_semil, detect_semi2,

detect_final, disassemble])

y.append(total_cost)
return np.array(X), np.array(y)

fiH joblib JFATAE RIS

results =

1) (delayed(generate_sample)() for _

B4
X
y

detect_parté6,

detect_semi3,

Parallel(n_jobs=-

return X, y

K2 AR

case3 = {

"EECAF 1"
"EECAF 2"
"R 3
"R 4
"EEA 5
" 6"
"R 7
"R 8"
"R 1"

Part(@.
Part(@.
Part(@.
Part(@.
Part(@.
Part(@.
Part(@.
Part(@.

SemiProduct(@.

10,
10,
10,
10,
10,
10,
10,
10,

2,
8,

12, 2),

2,

1),
1),

1),
1),
1),
1),
1),
10,

53

in range(num_samples))

np.vstack([r[@] for r in results])
np.hstack([r[1] for r in results])

3) 2) 5))

" 2" SemiProduct(e.10, 3, 1, 2),

" 3" SemiProduct(0.10, 3, 2, 5),

"HAh": FinalProduct(e.1e, 3, 4, 50, 10, 10),
}

L RAE

X, y = generate_simulation_data(case3)

A0 R I A Y
model = DecisionTreeRegressor()
model.fit(X, y)

AIARAL SRR

plt.figure(figsize=(20, 10))

tree.plot_tree(model, filled=True, feature_names=[
'Detect Part 1', 'Detect Part 2', 'Detect Part 3°',
'Detect Part 4', 'Detect Part 5', 'Detect Part 6°',
'Detect Part 7', 'Detect Part 8',
'Detect Semi 1', 'Detect Semi 2', 'Detect Semi 3°',
'‘Detect Final', 'Disassemble’'])

plt.show()

[DY 1) R 3 1 m ANMECA n T8 TR SR
import random
import numpy as np

5T SCEBCAF o Ta) RSN RS R 2
class Part:
def __init_ (self, defect_rate, purchase_price,
detection_cost):
self.defect_rate = defect_rate
self.purchase_price = purchase_price
self.detection_cost = detection_cost

class SemiProduct:
def _init_ (self, defect_rate, assemble cost,
detection_cost, disassemble cost):
self.defect_rate = defect_rate
self.assemble_cost = assemble cost
self.detection_cost = detection_cost
self.disassemble cost = disassemble_cost

class FinalProduct:

54

def _init_ (self, defect _rate, assemble cost,

detection_cost, disassemble cost, market_price,
exchange_loss):

self.defect_rate = defect_rate

self.assemble_cost = assemble cost

self.detection_cost = detection_cost

self.disassemble cost = disassemble_cost

self.market_price = market_price

self.exchange_loss = exchange_loss

i WS N LA
def calculate_total cost(parts, semi_products,
final product, detect flags):

THELE R RS I E T
part_passes = [random.random() > part.defect_rate for
part in parts]

AR 22 IO A Ao 3 5 e v SR v) B Y T
semi_passes = [
parts_per_semi = len(parts) // len(semi_products)
for i, semi in enumerate(semi_products):
start = i * parts_per_semi
end = start + parts_per_semi
semi_passes.append(all(part_passes[start:end]) and
(random.random() > semi.defect_rate))

THERGE YIS 2
final _pass = all(semi_passes) and (random.random() >
final product.defect_rate)

TFEAI A

detection_cost = sum(part.detection_cost for part, flag
in zip(parts, detect_flags[:len(parts)]) if flag)

detection_cost += sum(semi.detection_cost for semi,
flag in zip(semi_products,
detect_flags[len(parts):len(parts)+len(semi_products)]) if
flag)

if detect_flags[-2]:

detection_cost += final product.detection_cost

TFEARAC A
assemble_cost = sum(semi.assemble _cost for semi in
semi_products) + final product.assemble_ cost

55

THE T AR R

market_loss = ©

if not final _pass and not detect_flags[-2]:
market_loss = final_product.exchange_loss

THELR R T A B R AR R
disassemble_cost = ©
if not final_pass:
if detect_flags[-1]:
disassemble_cost =
final_product.disassemble_cost
else:
scrap_cost = final_product.assemble_cost
disassemble_cost = scrap_cost

total cost = detection_cost + assemble_cost +
market_loss + disassemble_cost
return total cost

AERCERCE o IR R R R SE 45
def generate_case(m, n):
parts = [Part(@.10, 8, 1.375) for _ in range(n)]
semi_products = [SemiProduct(0.10, 8, 4, 6) for _ in
range(m)]
final _product = FinalProduct(e.10, 8, 4, 6, 25 * n, 5 *

n)
return parts, semi_products, final product
B R
def simulate_ production(m, n, simulations=1000):
parts, semi_products, final product = generate_case(m,
n)

detect_flags = [True] * (n + m + 2) # G IR IIFR AR
AR EN True

total _costs = []
for _ in range(simulations):
total cost = calculate_total cost(parts,
semi_products, final product, detect flags)
total costs.append(total cost)

average_cost = np.mean(total costs)
return average_cost

56

for i in range(1,11):
m=1i
for j in range(1,11):
n=J
average_cost = simulate_production(m, n)
print(f"{m} {n} {average_cost:.2f}")

57

	对生产过程中的决策问题的优化分析
	一、 问题背景
	二、 问题的分析
	2.1 问题一的分析
	2.2 问题二的分析
	2.3 问题三的分析
	2.4 问题四的分析
	2.5 基本思维导图

	三、 基本假设
	四、 符号说明
	五、 模型的建立与求解
	5.1 问题一：假设检验模型的求解
	5.1.1 模型准备
	5.1.2 二项分布的假设检验
	5.1.2.1 Z检验
	5.1.2.2 T检验

	5.1.3 序贯概率比检验
	5.1.4 结果分析

	5.2 问题二：基于蒙特卡洛模拟的单目标规划决策方案
	5.2.1 思路的建立
	5.2.2 目标规划的构建
	5.2.3 结果呈现

	5.3 问题三：复杂工序的简化搜索模型
	5.3.1 简化思路
	5.3.2 数据处理
	5.3.3 结果分析

	5.4 问题四：不确定性数据的优化模型
	5.4.1 不确定性处理
	5.4.2 重新决策规划上述问题
	5.4.3 误差分析

	六、 模型的评价与推广
	6.1 模型的优点
	6.2 模型的缺点
	6.3 模型的改进
	6.4 模型的推广

	七、 参考文献
	附录1
	附录2
	附录3

