AR R e v T 2 B R B] AR

008843

FEARFE A% B IhER HFuia)
m =
RSCRGI T FBIETE R F 55 AN A R R B I FU A, 53 s
T3 SN F AR 31 ANHUE T TR NWP (58, BLEOH NWP i 47 221 e U b 2,

P T 2 R IRBIAA . W IR ZE G T TR, LSS, IR TR DA T
TAS LS — A ERE PRI T R

XS —, TR E . SR T b R TR S5, X L
WIS DR 5P LM, i mEAT TS H A ERARRE . 8-
AL TE, s B AR B Iy, AR B R A S TUAL BB, RS B
S PR LR BB B L o

R, AT L ENBIEEYE S H—, @GR T s D E i 0 H AR
R, SR 51N TR BB R AR BH(LR) S5 X FF M B [EH(SVR), 143 [5 i 18] &
BN SR TR B RTINS, WA AR 2 A A IR L1 BB BB R 22 . FREAT
B ELA, FETHLAS 0T SVR R B8 T LR,

BT, SIAEERSIHRNWP), MEERE P D25 R RIR 5 2]
BIRL R m AR KRR S 1 S D3R 7 5 BdmiEve 5 B — e xS Pt . R KA
2L (LSTM)HEAT R A i, 53 SR FH 3 T AR IHLH] B Transformer 351714 B8 Xt
o A2 XIS UEGE SR I, G NWP FFIER LSTM B AU R AR R 22 1 2 PR .

FEXT RN, /£ NWP HE SR A IR 5N, RRZERERERARL LT
BRI G RS RIS . AR 2 EHEEE IDW. £ R&ERmE, Bk
XGBoost fif {1t NWP 4 j5 FHHIA o X HESEIR AR B, Gt @i 5 ML &5 21 07 iR AE %
REG s TAegtdm E, lRER PR,

ZREPTE, ARSCEIEHE AEET 8 — P LR R, BIRLS NWP 15 2 1R
AR, P B 5E R [A R NWP ARG AL R 240 A0 T AR Y [' R Th R FUMIAE 2R
ARGEMIRTT T PN R AN R N 375 T AL RE T SR, W FUCR L 1 R 4F (1
TAEN M AR E AR S H A

X4iE: NWP, LR, SVR, LSTM, IDW, XGBoost

1

T I\ﬂgﬂifﬁ

1.1 HEE R

[t 5 A ERRE IR A5 1 1) e TR R] B AR REVRINI R 0 HET, BRI HR G . mIF 4R
L, ERBVEENAR ZNH . SRR BEE YK B e BHIR ALy H e Y B 2,
CAE HL T R G0 5 PR BOR B Z A . DGR H A T AR R OG F RN, K
FH e BN HLREITB TS REIRBOR, AR R AL A f i, i RO e
FAICAERRIM A, HEEH AR AT IABIR LMW R E IR L, OOy A BRBE IR 45 /3 2L 1)
IRy R 2024 F, EHOGRRPIVFEECRB 1.5 KEL(TW), HE. EH,
W 5 T2 B BE AR R RB IE R RF R TT

AR FRL B R T R L B S R AR AN R RFAE o« 2T I 22 ORI
e A S BT B R A, 10 H P Eh W 3 B N SR = 2R I E R)
I o XAPAN AT AT B SR L R 1) 22 A g IS AT R Ik Rl A miB i R X
R TR RS R, LR RGN, DIk, AR 6k f il 1 &
T, Xt T R IR EE AR 1 0 45 B TR BTl < B R ST N BE 7« FEA % 7 B RAS
DR H 22 4 HAT B B 3

HAT, A& SR EAR R DL 58 Al B A R e R U IIRE R, 2 T4t >
LS 7 21 T3 B T AR R A e AR 2 5C Z AN A B RS < S it O il e B B K
7. [FIR, BEAE BCE R IR N WP) B A i O 2 s S 36 5, A il 53X
SefE BT 2 YEREL, SRR T (RORS BERTIZ AL RETT, ORISR TR TN 7T 1Y
R RZ — o BEAh, BT NWP Bodls 22 (8] 73 He k], e i S B R s i L A2
Ao BEREOR H st XM A 8] RO BN H s, Wl 24T R e 1 S Rl B RUEE AR 2, DA
PETFFRMAGE, B2 ik 75 i U () AR B ik o

gi b, AL RS A D IR SRR IINE S IR AT A AE N R R R
AP AL, S ST AR ek B AT F0 1 o (R ke AR i R8N R 8 e 1 5 L
A EE PR OME S LR

1.2 A8 — a4

[— N7 AN A B A B VR T A R D AR, I 2 TR X AR Ll SRz AT
HHRHAT W ZZ M o B 5E, BUKBH UL B HER O EA, 455 6Bk i | Hif .
LA BV, A 2IEE 15 Bl ZIRBRAE R 2 B0 L . R P B 2 s A 2R i B
LIS 8] AT AT RAS B ELRRAR A L WO R S A S S R A =R eE R, PR
FEMERDERT L, A AL AR R N SR S5 o i 2 i s o 1 T i) LU AL
i B I 2 AR i KR LD o i BRR Th R e S Oy BRI, 5 ot S B i HL A
XFEE, AT TR A I T SRR O 22

BtE, I CACEE, B R AR AR B W, VSR S A S
KPR, Pz FLt S R FL GRSl U o XA i 22 70 A AU 7R 1 R X 2
AR, WOV S BB A IR, R AR s AT A B At 1 LAt

1.3 A @8 — K7
B, SRR TR SR AT HIR A Ve 50— LA, B A N e T S

2

R th. BUETEVE LB AN SURME S 7 E AL, 8 LV (S 1 B0 B 8
BROEAZ L, [RIN TR ER 8] = 2R B AR BT 200 A B Th R 80 . 11X
P R f/ DIEA RS T AR AE A8 TR [0, 11X TH), DALVH BRSNS, 1Y oS 7 (72 AL g

SR MR 2 I 2 A T 18] 20 A B S DR A AR [, b e AR
—RPEERNB TR . MR NERIRA(LR), AR RSN R, A
73 52 Sh 3 b e I 18] 45 JE 6 U0 H D e S EAT [00 o X LU/ 21, RS s R Tl
R AE B, RN R RAA T AR BB I A AR B R R PR o A AR AR M ff fe
MRz RIS FR M BRAR AN A o A, RS SO A T PR REAR R AR A5
A, (IR E 2 A R EAAON RGN ZIEEIE(NWP) 5 5 R Y
Z5KJ(LSTM., Transformer) L 1 PPAGHESE, L osiIil B ks L RO TN 4t 1 WA 0 F 72
Ji T

A A AR, 2R 2B i, SVR RS AEFRUINRS 2 340 T AP R AL,
R IAE ThZ PN R SR AL RI U [B H. SVR B etk 5z A0 Re
ZReXT LSRR o M IRt A5E AR OUR A D S DR A M BB & 2 BUHE 2R o, 5]
A SVR BZFERTF TR G SIINAE /1, RSB SR R R R DA F S 44
T AT BOR R4 .

1.4 F A=K7

e NWP 4L (1) 2 48 G 83 5 7 L DR P AT 19— TR BE, SRAAE AR
FEEENBE A AR . SR REHIE S DR AR AT X 55, B RN TR B (]
0 N — AN e B 7 S DI O 5 [P B AR SR A G TR T 5 PHE G TE G 238 24
gk & A AL D SR DR A B S AR AR IRBNE 5 -

K F K IR 2 M 25 (LS TM) X 22 A8 i (8] 7 1 AT S A . LSTM . e fri e A< B A %5 2
NI FIE S, &S B B B B R A DI R 5 R 5. segaxt b,
iR T Aty E = ML B Transformer #2284, it HEZE J1EX N T H3ET 4 R A,
H AR B HE R R SR A RE 71 5 FRAT U R 3

K ZE XA, KI5 22 AN] g VIRAS [F) H 4 FAS R R AR T IR EE BB AL (1)
T, EFRERW, METAUKB LD, fle NWP RHIE G) LSTM B8 7E
BN B B DTN R 22 B 2 A, JCHAE R RIZIAR AL . AR s R
REIE R RE)T . BR Transformer BEAYLEHS 7 ML H I LSTM PERESEHL, (HHEMERET
ETRENEIE NS, BRI SAW LSTM. 45 FRUFH, LSTM ARG R HirHd
KRR R B2 T, RIHEH Sl SHE N E.

1.5 5 LY 23 A

EERTEAE R SR (NWP)Y R 2 0] 0 A R e DL B G AR H i TOW SR 2% A4 1
W, R T S AR R AR DR AR R IE S SR E BRI RA RS, dt—b itk
R R . HHT NWP I8 5 DLECA B SR AL TR, AR B Al R H < 0%
75 5 3 2 XA LUK W 2 B RS R AR, R 75 6 R UA R R B 147 23 TR RS AL AL

P E = A B A AR 1 A3 0] P R v IR B INBUEAE 1 (IDW) . 22 SR 1k (A 15
MLR. LA 2] J71% XGBoost. IDW E AL Gr b B 2= (AR E H R, Ak L 24
NWP kg A BE B AUl 5 B AR s SR H . 2 A iERANEE A Bis i S 2 H S
HRD AT MRS SRR EMEER R, BTN G5 25 1) LR T HUL 6 v 6 1

3

XGBoost 1EA— Sk T8 FEFE A MR, BEAEHHTE R R B R 2 A TH &+ dE L M K,
H AR 2 A BE 715 TR
FER; = Fh 77350 AT I8 ROBE AR BRI, F L H 1 =k B R SRR IR BB BE R N T IR
LSTM TiIHELE, H4%E 2 40 S50 VAN AN [R) [48)ROBE 5 vh 0 B 28 Th 23 T s SR iy sl o &
K, IDW HEEESCIL ARG, (HIEFHREA R . M2 R, 2 M4 RIS XGBoost
fﬁ%ﬁ%ﬁﬁ&VﬁTﬁWw% 7E H R i B AR Ji 51 X 38 R I i . XGBoost
FONAELR M oG R E B J7, 7R RS B 5 Th 2 o 2= 45) _EAR T 26 Pk |,

1.6 B4SH
A 14ALDESR

RBREE. ARE LN

&3 it Fit A,
A& KRB 3h RAE
T/ B e R

L EEST T
EST ¥ SRS
HAAE

At

HBFHER
DFT %/ J& 3

= —
HAR 35 XK
A AT

A=

B & B 8] e
6B hRiR £
AENEERR | —P
A xR FE R L TE
WAL LB
BiE A AR SVR3Z £ FE1&20%
e RMSE\MAE\ r L ks en

CR\GR¥

£ AONWP3K 32
RA TN

HFRFEAE) gw

AL R A BEAAGR

HAK 7k
Renk
B AT 2 A

O - DERLKE
e RRF | p(isTM) *i"iff;’ st
BREIRE 7*“

L
méﬂtbﬁ/ﬁﬂfi

ZIMAE T H15-25%
=
B A3 4 AL
Gk
|DWALSE & o b A 1A

ErT %R & .
NWP 22 i) 1 R & ; ;iﬁir‘z
B
MEF % 44E
XGBoost A EA

D
it AT IER XGBoosti% £ % | DN /&
WRREEERE 14%, HERS, HHT
HOREZRER JEMER EAER

4

— EXRRi

— FEWTFURIAA L, JGRBTE ™ A GRS KRG Y sl A R A R R, R
MBI Th A RS EA AL

T R R SCREA U AT A SRS HUE E AL .

= KFDER AT, —RAIEIE A A 52 8] 500

VU g se s B AR, TN e Al s Ao 17 0 L 3 A e e 78 i P 7 S R R 5t
iy FERETEHIA, NWP 2 e s AR 6K i il SE B 48 X BTy R ARAL Rk HL
PR RR AR

=\ fFSiHEH

k15509

F5 5 L] BpY
1 P TN B/ R HEINE W
2 Gsrc AR R W/m?2
3 Gsc PN W/m?
4 Gr A T e W/m>
S Pe i T 2 S 2 /
6 v 3 24 /
7 AR Mo £ /
8 SR I7 47 £ /
9 as O BH & B A /
10 0 NIH /
1 w I £ /
12) KBHARE /
13 ¢ bR /
14 Ernse BRI /
15 Enae T /
16 Eme R ZE /
17 r 5% 2%k /
18 Cr HERf % /

19 Ok EXisd /

M. REFET 5K

4.1 HB—: BETHSERNBENERRERR BRI

4.1.1 f R SRS B R KRR

BEHE T A A AR R R R KIRDGAR IR L g AT AL A y M UE S RAE ¢ 2
IR, AT LK BHAE S BRI R . I 2 e B i HE S 72
—. H#¥z

R SRS & Hy AR SR TR BN &

max, H. (B,7.4) (1)

Hrh g HHSEARE, BRWUH, y NI
T OKPFHNI S0/ 0 A Ok F

K BH ' RE A AR 2 T b P A R R R TR BN A7 €5 10 @ X ORBHISAL B CRT
AT SRR E (i A HEFRRE.

1.RTiifA 6,
C0S 8, =Sin ¢Ssin J + COS ¢ COS O COS @)
Ho ¢ N, S AKBHAGAM, o AWM Ch 0o, B/ miE 15°)

2. fHURETNGS 1 60 BRI
cosd =singsin(¢— F) +cos o cos(¢p— f)cosw 3)

fi BRI = A4 A0 T

CoSé =sindsin g cos S —sin 6 cos@sin 5 CoS y + COS S COS @ COS 5 COS @
+C0SJSin ¢sin oS y CoSw +CoS o Sin Ssin ysin @

W2 3R] USSR T S5 AT: 55 W D) A B S5 AR T RO N £
=\ LR H Al

G SRS R R R AR A AR e R0

Ho =" j:aye”d 1 (6)-cos dtdN (5)

Forb 1(0) RARIRSRAE, TP T A B BER R A 1

AR B R, I8 BUE AR 7 B e B Y.
WU, Wi 54 ERRNEHHES (25

(4)

6

M ERHE S A FRATAT LAS HE— AN A EE 18 0 P3N S48 5 5 e K A7y
B HHMAE ¢ FIRRILM: B, ~ ¢, JERIFEXFERT BUE AR AE 22472 KB & 5
FIMPEI, 5 RPATE L, AT 44 T4 R AR
B {00, RS2 ‘
~|180°, dbkEk ©
JIfifa y 7 0 8% 180 Bi /4y, Bt prkefm, pgBkeAdb.
FETTAL A 9, 0 BENEAAL, 90 FERAZR .
B PTAS F00 E — BRAE A, Se B B oI T AR e A i O B e AR
(purl.stanford.edu)
X EE LB 5% o
4.1.2 R
—\ AT R
14 JA 1
MEESE R R SR HOH 35k A D 2 e R B AR SL e e — eIl 6. 7 H, BHE
HIAE 120 1 A BRAIRDIZE CETRPHARBEIAD 2IRLES, ik 17O RD
R 57 R BH 5 FE A RN H BN 2 28 5 i)
B 3= A %—FEb{ih 5 rRastik

30

— brE
IR

& Ikw

UL

I\ \‘
St :
(TR
| \
| \
i e

02/01 00:00 02/02 00:00 1)2:’()311D():(l() (;2"(]4]()():()() 02/05 00:00 02/06 00:00 02/07 00:00 02/08 00:00 02/09 00:00

2.5 B HAR T # g 22

KPR LI R Y BAR T BB, TEHAELTFWMEE R, ArRel AR fEEsR (3
R F5). BEXRNCREW ., S5, 2. M RZES

3w FAL

MEEA TR E, BKIRZ, BZER/N. HEFE NMAE RN 8% ~28%
. HAWE TSR

1. TIRE “Bgihs”

R BRI A e I e Th R . H S PR ETE, B ARIEE, HIERT
BT . WA — B 11:00-12:00 208, B REHEEHRAME (4 11:30)

2. =GR F 5

PR BN 22 = R I i 2k B VIR ah . dishbriE Z8om (Aik 20% FE &),
A R, T REXT H Y 3 R

3. ZH M- rE

KR A HIRF 2 H A - T DA R e P DR i AR — R 1ETR
f& (7:00-9:00) FNEEHE (16:00-18:00) DA ARG, PRBLIH H HERHR ATIER S AN
B 46/21 B2t 5L IREM

30 -

25 -

20

15

10 -

5

0

30 -

25 -

20

15

10

5

0

1 1 1
00:00 04:00 08:00 12:00

1 1
16:00 20:00

B 56/21 B 32t 55 IRfEst b

— LEhrME
— FBME

1
00:00 00:00

1 1
05:00 10:00

1 1
15:00 20:00

n] WAEHEL 6/21 A1 9/21 H, wIBATRMN, 6/21 AFEH, 9/21 MM K.
B 6 AEAL—HAMILE

3/20 6/21 9/21 12/22
BT 0.2966 0.1766 0.2166 0.3766
P4t iRE | 0.2841 0.1546 0.1954 0.3596
PR 2 0.0346 0.0078 0.0174 0.0578
R R 0.7868 0.7868 0.7868 0.7868
HRR 67.90% 87.43% 77.23% 57.53%
HEWIR Cr 0.69 0.96 0.89 0.56

W BAE Koy X2 AR, W LR R INEOHER, 400/ et
R R 58 R PG

R

BeEhE I ZAE I B P S ST R bR AL, WahbrEZE . AR R M.

AP

R,r = Max(AP) —min(AP)

(7)

B 7365 XiEE 5 ER

R HA T
BT TR AN P 1)+ MIBAT BN HTE SN

Prcans (1) = Prgans (1)
é‘ t — means X means 8
O=" o ®
A MG R ShR N, R RS,

T TR B A
XIS TP 81 x, BEAT 85 i fe B P2

X ()= xe ")
;@Pwﬁﬁmﬁﬁ,ﬁ%ﬁzoﬁﬁ%%%mn:%pqnﬁ@ﬁ&ﬁpuyﬁmmﬁ
@ﬁ&%ﬁ%ﬁﬁwﬂz%o%ﬁ%%

42 M —: T LR F SVR JI%& B IR M

PP RSB L T SRR . 2Pk [Rle (LR) 53ZFFrERIH (SVR). iy
P PR AR RS AR I AF 1 rhar B I dabe il R, DR B AR SR

IRAEMCH T S D2 R R 26 A o JE I RGeS LU, FRATTRE 88 IR0 H AR PR
AR ARES, SCFFRERIE (SVR) FESLia i R ILH — 2 TN RE /1, R ILFr
B A BB I PP R T RAT KRR S

XS e BT RATTB GRS, AR EE P LR IR, A R R AR
(R BN A AE R PR o AR S SR = R4 AR IR L PR A S R R AN A 3R

BJa, BT 7 HAMERY, 40 RNN, RAG SERBEATT AT, DL LSTM S5 Y
RARATATE

4.2.1 FHEFE Y
TR EIIFRARE N, HARE I b B 3L &
=K
Pclean:CIip(P O’P) (10)

BRI, 2o, <OIF, SGRBUZ BT T 0,

BEE Py oresnoig 29 T AEF /NIRRT, AR T ERTHTONE .

H—4

JEIR R VE I E R, H SVR SE AL M e A AR BURC . Bl 1t 2= X TH][0,1]
P R] A A 1k S e e AR R I R PR S

B X NRVELJEMME, X gan APTETRVEER P BEBAME, X gan APTETRDE
PR
X - Xmin train
X 3 (a1

normalized —
X - X

max_train min_train

3R & — L JE fr gh R
4.2.2 PiREE

WY Ja 75 BN S I0E, N 1 8 AR I Zhad 2 b 27 2] B EE IR RRE, %
R RS 7 SR B R 2 R AR AE o IR h AL & IR AE OB, ITTARIE T
AR5 24 1 AT
423 LR

T LR &5 SVR A IR AR I, A7 LE2k M) A s ik H R . 4R

W Bl L B T s, K H(E) BRSO X IR R R AR, B RO 2427, M

{cos(2427r “H(t)) S — T o R [R50 4 FE s A

sin(242x-H(t))

c0s(365.2527 - DN(t))
sin(365.2527- DN(t))

cos(72x - DoW (t))

_ R T/EH
sin(727z - DoW (t))

[EEEN ﬁﬁ{ Tk, ﬁﬁ{

22 57

Rl D S AR TR B, A — AN A] £t BORFAE A1 X 2 7 SR D 28R B o ARe A -
SWRIE F A E S o I TR SRAL LA R — /8 WIS 207 B |7 3 X
TR A LAY AT DUAE & BRI 8] BOwS [S 35 b AT 25 1F T

B/MLIRZEFIRINE
V. =0+ Zk:/}j P t-jp+ i 7, - TimeFeature, (t) (12)
j=1 1=l

Horb g N RE D IR EERE L,y 8 oRoE I RAE B B0 AR A
TimeFeature, (t) A58 [AN TR EI 18] 5 7 FOEL

B HZ PN S

LA BV P BT PSR T SR 7 R RIE I, Bz A R HREh & . B
AP HATE T A — DTSSR, AW AT ROBERGER, 5 — DT AT — 1

10

iR, B DAER IS RE R S B2+ TR R D
i B RS EH DL
UEY— T BN T R AF BB ke D DIFAEIZ AP IE B — AT R AL
TR F—E
5 i Min-Max 35— P, (t) 38 S5 2 BRI 2 4 -

P(t) = Prorm '(®) - (P = Prin) + Pri (13)
GrHTEE R 1.
4.2.4 SVR
SVR] H b5
f(X)=w'g(x)+b (14)

e x =[Py P P WHIN, REAE TR 4(X) AL SRR, wORLE R, b
i BT o

IPNERE
SVR ANE TR 1E & W P 5, SURTREH o (R340 AT AP I 50
L. (y, £(x)) = max(0,| y = T (x) | -¢) (15)
5 4UREASE Y
. (1 : «
min, [EII WIF+C (6 +4)j (16)
AP E S

WT¢(Xi)+b_yi Sg+§i* (17)
& 20
Hrp g, & iR RN e IMRZERAME, CRIENALSEL, s 8 5 % BRI 25
®E.
I F A% B H B, T LA 2 5 2 1 TN pR -
f(x)=Zn:(ai—ai*)K(xi,x)+b (18)

A o, RHHEBIHIT, K(x,X)=@(x)" ¢(x) %R

A FER M Min-Max 305 — 038 J5U s S5 an Kot BAREHE ILFR 5% 1.
4.2.5 RESHT

(EEIIPE et

{yl _WT¢(Xi)_b£g+§i

11

B 8 —A®m/GE—J LR, SVR 5EREA LA

— bR
25 b —— LRl
—— SVRTi#l
20 ﬂ
15
| /\ M

2017/2/22 2017/2/23 20177224 201772125 201772126 2017/2127 2017/2/28 2017/3/1

Ve, ZTHAE 1At T

% 2LR 5 SVR % £ #3Est b

—

w

LR SVR
BT RARZE Ermse 0.201961789 0.170765665
PIAEI VR Emae 0.17205376 0.142764144
IR ZEE Eme 0.045293562 0.017757462
R REL r 0.71281159 0.783770118
ERAZE Cr 79.80382113% 82.92343345%
B E Or 81.49882904% 86.96330991%

X E A AT AL R R

% 3LR 5 SVR # %t &3t it
= 7=
g TELERED X 50 LU

Ao, ZARE T TCIE AN B (5 5 J 33k

REEBi— e R AEL MR R XK (a7 5 6E 155
SVR &M, SH/IMEARE R FEA RIS
BESEZ L ATEA ANEBA P A
4.2.6 FH—H 2R
LR 5 SVR Ff S AE T8, IIZRAFER 2t a], HohFHods fd i 4 nr, {5
PIE D IS0 JEFAL G0 2] Tk AL Es 5) T ik R B, FRATTI B e a8 B 2
Mo WSS T REH SN GERM ERMIIIZG T2, A SR T arm
Ho
VR B 2 SRR 2 5 00535, 1 CNN, RNN, RAG 255, 75 %A A i
MEBROETE . FEAN T, % T CNN 5 RNN, R EHEA & KHaERLZ, (i
TR TR, R AR M S AR X A&7 . T RAG, HAJR
FRESIAR SRR, M TEfER BRI AR G PR EsEER, 5
NLP s smttoe, SRR FIEASE, FbHpiaEs.
FER TR AEIZH e SR I a1, B KA AEIZ 10 LSTM S5ER— 5l 450

12

& I BdE 5K Transformer [210 H
43 BE=. &EF LSTM 5 Transformer FL#| 3B NWP H) TR E

4.3.1 FAEMALE

FERT— AR A b, AT ORI T St DR B AL A . SR, B RAE RS
JEIZN AR AL TG BEAS A2, T [RIFE T 7 sk 250 A B DA s i oK Sk R S R AR 34 [Ut
ARG NWP Eidls, FIHEX AR R GRNHIRGE ST, FHERF DR S R .

RSEPIX— HFR, AT Open-meto IREL =15, BRitika) B H RARIRE, K=
S NWP i, tamhG P st 2750 5 AR R TG T 22 B . SR A AR i
fZM2% (LSTMD {E N FE @BV, F22l 8 H Transformer #EATX) L. TRMMESSE A
Z BRI, H AR TR K 24~48 /NE) (BE 15 080 KA AER B I ZE .

BRIBIERTH—.

1B 1 SE D Z R 5

Pt = [Pt—L+1’ Pt—L+2 ----- Pt] (19)
XF AR T H A5 9 -
Pt = [R+1’ Pt+2 ----- R+H] (20)
A 5] AR NWP R AE 751 -
X NP :[Xm’xuz ----- XI+H]' X; :I.Ti’Gi’Ci""] (21)

HopT o8, G RS, ChsE

B AU NN T LI R F 51+ NWP 5581 BEEE [P™, X "]
4.3.2 WIESE

BT LR) AR R EN 2R K it 18], HHNGRSCRIR RAR B BRI T2 8
Pk, RITREAAINGH I NBUESE, DU SIS FB AL I SR A0CR

BEAL IR B FE DU A i Ja — - &l o3 9 Beiie gk
4.3.3 LSTM

LSTM (Long Short-Term Memory) WM& 5] AU AT itk 1551,
fil e 7 E i RNN A AR FE T 2R) R, 3 R[] e 71 o R AR AR

B A NEEIN ZI RS AE A & X, U LSTM B8 2 3 R
MR

fi=oW; -[h 4, x]+br) (22)
P NWRSE R UR /N

{iizo-(vvi'[htl’xt]-i_bi) (23)
¢, =tanh(W,_-[h_;,x]+b,)
R Hr

C = ft Oc , + it © Ct @4

B 1] S FEOR S -

13

{ot =J(\No'[h[—l’xt]+bo) (25)
h, =0, ©tanh(c,)
TR) e 2B L 30 O 4 B R WL Ry 22 25 TR 7 41«
lf)target _ FC(ht)
Horh FC R A e
15 2% BRI HCK F FR i MSE #512K:
L GRRLI 26)

BRI 1.
4.3.4 Transformer

Transformer ¥ FH H i3 2 J7ALHH], A& R BIFFRAT v 588 7780 7 21 18] 378 B 125 A0 6t e A5
RE. BAMESEEHIE XM T T TransformerEncoder-Decoder 4244, 5% /5 41T i
By A

RIS UEAS [7 51 S A7 VAL AR T 2 T 55 Hh il A 1, fESI N NWP (5 5,
1% B Transformer gmfi-ffEnd 25 # V5 %t LAY . Transformer JR A 1T H T BRES b3
S, FEKEBHCEE KR S R, HZ OB T BIEE JIHLE] (Self-Attention) &
BEFEAT I 2R

RS STt

B NR¥E— 2, PHED DR ERK NWP JF51:

X:[PhiSt, xNWP]ERLXd (27)

Horb LW I SEHAORIS AP KBS HL o NRAIELEE o SN B Seil ol (57 B 2 B 2R 15 1 8] o7
E{%AE\!

: pos
PE pos.2i) _sm[ZIJ
10000¢

pos
I:)E(pos,2i+1) = COS{ 2i
100001

(28)

A JAi%5 A Transformer Encoder, 15 2|K/NFH) B R XK IR. B 5 158 FH A0S 25 Tl
WA AT

P — Decoder (Encoder (X)) (29)
A0 B 3 R IR o SR
. oK'
Attention(Q, K,V) = softmax Y, (30)
(Jde j

Hrb QK V il B EAERE, SREMARANSGET 25l O 7 ondige

14

71, BIANZLIEE SIHLH (Multi-Head Attention):
head, = Attention(QW,?, KW, ,VW") (31)

B, Transformer 1813 2 ML R 2 SRTGUE @M, 24345 0] 5 2 700 AR R
KL
PR ES LSTM R HHE, KA Z D HKET5 R % (MSE):

13 A
ﬁTransformer = _Z(Pm - F)tJri)2 (32)

H =

HARGE R W% 1o

4.3.5 &R
A A
B 9 A F&E—F LSTM 5 % FR{Exf 1k
30 - — hR{H

—— LSTMTit#ll

25

20

15

10 -

5k

0 1 1 1 1 1 1
2017/5/25 2017/5/26 2017/5127 2017/5/28 2017/5/129 2017/5/30 2017/5/31 2017/6/1

BN ER], 526 3H EAFAMW, 529 530 BHANZ =K.
Vel EE, TR 1 P A RS

% 4LSTM 5 Transformer i £ 4 3F tb
LSTM(NWP) Transformer(NWP)

WHMRIRZE Emse 0.148969084 0.186971369
SR IR TS Epge 0.099297952 0.119290721

VI IRZE Eme 0.021319649 0.013775991
FHRRE r 0.84658388 0.770334372
HEMZR Cr 85.10309165% 81.30286309%
EIEE Or 91.10070258% 84.07494145%

XTEE R I, LSTM(NWP)HER R 5 G548 2 B 28T, 1M transformer(NWP) R 2 5 &
AT SVR FERA R KIS

T~ Transformer 4fiyE & AL A O0 SR IAE B2 R EIR IR T, A —4F[RIR% 15 7
B BB FE A BRAR T 1 4% H LR

15

B 10 LSTM % £ #% % B B 11Transformer % £ #¢,% &

30

& 00 PO ®PD® OO ,
10 15 20 25 30

TEANEGEHIE. LR. SVR. LSTM. Transformer [FJAHIE 2 A E, 77 W LSTM
TR 2% S B U
B 12 AtAHANE

HHRZEEATIE

B 13 LSTM 5 Transformer 4 & & %t bt

W for P
e RO B K
LSTM ggggﬂgﬁﬁgﬁiﬁ% LR, B
A A M R — Tk
BV B B A 4 R e SRR, Bie
Transformer YIZMT 34T (L R, BRASL SHEAE IGRARS
Fi A T L R A BN S

FERFF B — B0, WIZREE AR R 26 R, Transformer A5 2 Tl g 2 B 14 55 1
LSTM, JCHAELLR LSRR SR 2 5K
WS R BRGSO A s H I a2 fhig i Rk B E A L5 T

16

BAREHE: MR TR ARERETIHEE UL T ILA: FEAREAD, AR
Transformer Z 3 FH LSTM, 75 KEFEASCEESE 2] 1052 br o] I EAR SO S 15
R —IR. —EREYE, KT H R ETAEXE.

S RS A BT B AR AE TR TRME B, Hi AN LSTM F I 38 V- 48
BiRAG R UHAENPRAES S, DR S W8] 75 ()T 52 1% 5 B Bt 58 AH o,
Transformer [14 Jmy @ A5L S 10 I 55 13X P R 30 8h 25 0 %1)

FEREINGEE A BIERE S0 R T A e By, JCHAEARSR R R+,
2 B/ R 2R AR O, R T 2 R

AT HER AR AT B E 2 B 15 08— RIS SR BRSSP A K,
Transformer £5H R 2R L2, (EH R T F RIMARIELL .

JRE Transformer £ HIRE F S5 RIN T, HAERRBKET, LSTM 1R
FREMRS . HEEGRT: P @EEILS: SER, S8D, IIgGRE; it
R P SR R SRR JINRG G e T — D5t Kk, EHELL LSTM
VERRZ O ERENELE, Transformer {E A SEIGME AU EXT LR, RBIHAENFEAR, Eii
I 7 AR) R PR

4.4 FFEPY: FET IDW % XGBoost [{] NWP 23 [A] B X BERERY

4.4.1 FHEWEELE
NWP 2 0] PR FilH PL 1° SIS Msseft, 25T 20 £ 30 &
BT MO T 7 5 o Xl RUE A DA 2 i B AR AR L (TR MW 20 T B 1S 2748
1, SECELPRNFEAE S AR R B Rk, NIRRT SRR 2= (B R I B
AT e R R A 48 28 1AV 3R J7 V56 SR 4 NWP 040 2047 2) 8)RR A B
DAUREE ey, 1° RS, UK)\ AN [B8 55 NWP 155
4.4.2 IDW
WHEBERSHERES B 14 ki ERER
PL NWP Hr S B R] —— K BH &
S (GHD. Ak =EAF, HEmnT

= A .

S VO NWP RIS S (X, y;) A H B
ARV = T, y,) o D SR E Fiy
(Xovyo)o L4

Hir: Mg ms fxy), ki
Vo = fA(Xo’ yo)-

i i w F R B BEE 0 A 4 48 vk
IDW, HiEEARWT:

n v,

2

tTe 33
;dip (33)

d = \/(Xi —%)° + (¥ = Yo)?

17

Hodr p ARESRE, EHIEEABUSFEE, WEN 2; n@EWE 8 MBI M. 1%k
R (RIS AAE R SR S, BV 1 5 X6 &5 F s ek ok

AR E RN S i

Xt GHI. i mE="7"ZEWHT IDW #iE, RGO & R A
RIEFE, HERFLE coarse-grid NWP FREM AR, #%8 “LSTM+FF REERHE" il
M7 %

TEAH R ZE MY T, Pl F R 4h NWP SRR 5 4B 5 11 B ROBERRE 7 4H 30 N 1R
MR 2GR 22 RAT, EFEREH R ZRAGNEGE, B2 a 58,
fE “IHFERA” yserh Gl = IER TJE IR = s R S, [R AL T B i
BEG I SERR IR A s eI AE L X Bl S T s 35 2 2% X 3k, 4B B R n] 2 0k i
5 NWP (% Fm S e, AR — e o .

TR R S

REFREITESCIR B, MR E/ADN 5T HTARE, HERREHE. 28T
KR T EAR G Y EIE S MR G FEEE A M e B W &t fel, #fE DAS
PERAR B R U FURFAE s JovER DT e I e AT IS BOR E B IR, 5% NWP R4t
PefmZE . Rk, IDW /ERIEET R, EAERE T2 ReiEh = b3 s e,
{H LTS 3R T Re 1A PR
4.4.3 MLR

R 2 Ta) A 7 v HR e R 28) ik ZE A Q1) A, At — 20 22l Gl AN Gt
THEBEOR, D L35SR 2 B R SN R 2R B AT 2 A HE
AT) S B O 3 R Sy SEZ R Al A (R R I

EAXBHESBETE

GO VEA T B AEAO NWP $2 A 0 2 FT B 2088 A8, T A2 ek A4 2 7 s 2540 BX s i)
Bl AR, B RS SR i i A Bl AL “ABIERRCAR 7. L2 et ml A A
B, REHEIEEPRIIE P 524 NWP 28 (GHI® TV, CO) FEfELkik kA,

P=8+> (B GHIO + B - T+ B, -CO)+ g (34)
i=1

Hhi RREID A, & ARED G BOEN /D —RiEIESE B, MR
B BB 2 BT I 2P 20 2 NWP S NARAAE AL, 18 20615 B b S A2 1)« Rt &< S
A7

MR ES LT R

FETIMAE T A, G B RS A E S s UG BE I — 30 0 BN 32 4T, Hr B IE 5 1
SGHFME, 507 IR N LSTM MR i i 2 —E)R 5 NWP Hdithy i
[ARERY, Bk NWP S NS AUBIE, A gt S SN, MANBIER R+ 8T
A LSTM B R AT 7N o

WA 2 AN A B AT SEI R, %7 =X NWP KRG R ZE A —x “Alfw”
BOR, RHEZ AR, HEREESTARZUE NWP {5 iR EZR KR T, B3
FEA 7 TR 22

18

REX S HH T

FIANGEH B R G, BRI BB B MAE CRIgZaxt iR %) P35 Bk
2] 6%\~8%, HAFIAF R NIRRT 10%. 3L EEE 7%, ATTEREA L
SRR R ERE R R, Al NWP 5 sl Dh 3R [fe e 2 i e fb i
B, e 1 R TR R I E AR A ATV IR SR AR R TN A, STt e
P 5 AT R

A, T ERAOB T IR DI R, BAERARAE (el sidgs) T~
HRESIRZIR, R — PR AR L M e
4.4.4 XGBoost

AT ATR G @A, LA) A BAR A G Re /), AeSE i bl 92 NWP i
o1 PR AR B 5 H I SEBRIU g I B 2 TR S R R R o ARSI IR REDL R PT g RevE wik () 4R
F2F) 53 XGBoost /E AR, SZHLE4E NWP 41N [HE 3l s A8 = 3 45 A PR RS 20 55

BB S B

H AR TE DT LA A 1, R — A Rt if

% = Txos ({Xt(l)’XI(Z) ---- Xt(n)})

Hrp ROBERERREARAR (R GHIL &5 T) £)l i THE, X
NI 208 R E R AN D RIS IR AR R, fyop JVHT XGBoost YIIZRHY ARLAE R bR
.

SEGERAT ML, XGBoost 1] LA H S AR f [A] 22 B R R S AR MEM N, I3
ARSI (GBDT) ROk, RIS SCRPRF IR B ZE i, AR T IR S i P S it o

REBTHS I RAE

XGBoost F R (Il Zri NG . A AL : 2SRRI AR AR CInga i R
whE); AL ZIEE CNR A6, 275 KSE One-Hot Zwfd); HESERE: 4N
A B (i) VRS BIRHIE

b5 A2y Bl A S) T 26 Bl T 1) R SR AR R (WORBH SRS)« ITZRIRE
R LRSS NWP Hds 55 S Sh A il 2 R MU I 2] F AR e Xt L 20 % s Bl
A 38 XGBoost L& MAHEA, WSIALLH (WA, 2200 IENI0D; 47500
B BOH 2417 NWP Hi A48 XGBoost it JRy i tHE, S A HUAE A

BREIR S AR 7 4

FERATRCRIPAL o, XGBoost 2 3 L TR ALy %, PP i iRz it — 2 f
1% 3%~6%, HAERALRIDF TRARRIFIEN . thAh, BRI E B A B &
LI BT 1~2 A W A5 I8 o 3, (HARER MR AL 5 058 IR e RURE 45 Rt B A iR

19

4.4.5 IRELHHT

EE MLR #ZERZER

B 15 MLR % £ #% & B

% 5IDW. MLR 5 XGBoost & £ 5 #75F 1t

LSTM(NWP,IDW) LSTM(NWP,MLR) LSTM(NWP,XG)

Y MRIRZE Emse 0.149075588 0.150807093 0.150929612
AT VR Enge 0.104028837 0.104380515 0.102452702
PR ZE Eme 0.015263115 -0.001152605 -0.006151679
R R r 0.843186673 0.839253104 0.838617417
ERAZE Cr 85.09244122 84.91929073 84.90703883
EHEE Or 90.32006245 91.41295863 90.86651054

ZORRW], EMEH TR NWP Bl e, AECT LSTM 1M 5, HER AR &1 4%

AT, EIFAEZE . BT R EE KRB M AR K2 A A B sk ga s, Albrn]
AN A BERTERIE) NWP Hdls 24+ #ERf

B BB

5.1 AL R

> PSR, LR, SVR 3| LSTM K HAR L, Bt se s,

> BERTIACFEFEVE 6 R AR IE PR E . R R N 5E . TSR AR AT R
wit, BERA TR SN

> PR, MEANESE S FEARORGI N Z4EE, HABRE WK R, tn] f HAd

7] 7L o

20

5.2 BRI Bk i

> MELLBHT RERLA . TBiesE LR, SVR b2 LSTM #R TG4 SEBREE I b gl 7R 1)
BEATRCHERNAR AL, 38 BT 5 SR F AR

> BRI, HEERIGRIEAE IR, EoE DORHRR T R i A PR AR

> PRGN R . B] R DR TRAE T, KRG ML I BRI R A
B Z W3 IR) S 06 S R

5.3 AR ok

> 7 LSTM IRI3ERE L3I \VER A BUM, IR ER A DU B 0T BB,)
S LI

> SIAMIEE SRR B, 4 A IR SR S T, SR T R SR e
.

> TN AR R 3

5.4 BRI HE

> AL XA R EE Ry, SERE MW GG AR HL s 1Y) B ST R
> NMATEREIEANT TG, ME S ABHUR 55 TR . A7 BRER S SR Tt

7Ny BEICHR

[1]JAgoua, X.G.; Girard, R.; Kariniotakis, G. Photovoltaic Power Forecasting: Assessme
nt of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy.
Energies 2021, 14, 1432. https://doi.org/10.3390/en14051432

[2]Agrawal P, Bansal HO, Gautam AR, Mahela OP, Khan B. Transformer based time
series prediction of the maximum power point for solar photovoltaic cells. Energy Sci
Eng. 2022;10:3397-3410. doi:10.1002/ese3.1226

[BIXISCA. Jefh & Dy 2Tl R g 0 785 Wi [D]. L7545 /e K 5%,2021.

[418A4R R . FE TR B 5 2 FOE R R DG AR R D R BT ST [D]. AR R Tk K
£2,2019. DOI:10.7666/d.D01762427.

[S1FR 85, REE, 2. B R AE T OB A B Ih R IN T iEL5A] AT
2241, 2025, 20(1): 281-290. DOI: 10.11985/2025.01.027
[6]https://purl.stanford.edu/sm043zf7254
[7]https://open-meteo.com/en/docs/historical-weather-api

21

Mis% 1

SR 5 SVR il 7 kb

—— bR
2 —— LR
—— SVRii#
20
15 F
m. \ /
5k
20172122 2017/2/23 2017/2/24 20172125 201772126 20177227 2017/2/28 2017/31
— SpRii
—— LR
—— SVRFiii il
° : J f)
2017/5125 2017/5/26 2017/5127 2017/5/28 2017/529 2017/5/30 2017/5/31 2017/6/1
—— R
2l —— LR
——— SVRHill
20 ¢
15
10
5k
2017/8125 2017/8126 2017/8127 2017/8/28 2017/829 2017/8/30 2017/8/31 201791

Sl
sl ——— LRl
—— SVRTilil|
20
15
3 \
5k
0) . 1
201711124 TS T i 201711128 201711129 201711130 201971201

LSTM 5 TF FiuifE xt b

30

25

20

15

10

35

30

25

20

15

10

[

L

J
f

— PRI e [STMFIUN TIER e TR T 2

A

ll

— PRI e [STMFUMTER e TR T R

23

IDM.

30

25
20 n
15

10

2_1 /U L

— PRI e [STMTUU IR e TEFFUN T R
25
20 ﬂ ”
15

10

—_—LFENE —STMAUU IR e—TEUR I
MLR 5 XGBoost TR I Z % L]
30
25
20
15

10

%]

— SR (kW) e | STM(IDW) (W)
s | STM(LR) (kW) LSTM(XGboost) (kW)

24

35

30

25

20

15

10

e SR TR (KW) s | STM(IDW) (KW)
s | STM(LR) (kW) s | STMI(XGbOOSE) (KW)

Sy

10

WANENAW .

e SR (KW) e | STM{IDW) (KW)
e | STM(LR) (kW) e | STMI(XGbo0OSE) (KW)

25

20

15

10

%]

e SR TR (KW) s | STM(IDW) (KW)
s | STM(LR) (kW) s | STMI(XGbOOSE) (KW)

IDM. MLR 5 XGBoost %%t & &

25

o)

26

Hitg
R

M 2

:;_::;_:_g: (T 4._::_,__W._:_,,;_j; T

fTH Lt

| _ -

27

Mis% 3
AR 1 A% O ARED

import numpy as np
import pandas as pd

— FHEHHESRIASHEE —

G_sc = 1367 # KMH#%E (W/m~2)

G_STC = 1000 # FrAEMIELZ&A: T rodER R (W/m~2)
RHO_G_DEFAULT = 0.2 # BR\Hum 5%

BRI S KAENHE
TAU_B_DEFAULT = 0.70 # EHIESNAZKES 25
TAU_D_DEFAULT = 0.15 # BUSHESH IS5 5 R 5L

def calculate_declination_angle(df_column_dateN):

WE KM M (8), HAZE.
it E AL DataFrame [dateN %,

S
df_column_dateN (pd.Series): —&HEHF % JLK (n).

iR]
pd.Series: KFH/R&if (8), HA 2.

n = df_column_dateN
A3 8§ = 23.U45 * sin(radians(360 * (284 + n) / 365))
angle_in_degrees = 360.0 * (284.0 + n) / 365.0
delta_degrees = 23.45 *
np.sin(np.radians(angle_in_degrees))
JReh S

return delta_degrees

def calculate_equation_of_time(df_column_dateN):

HEBNZ (Et), BAL2048.
Ht= 4T DataFrame 11 dateN %1,

S
df_column_dateN (pd.Series): —4EHHHEJLK (n).

1R [A] :
28

pd.Series: ¥ifZE (Et), HALEpHh.
n = df_column_dateN
B = (n-1) * 360/365 (in degrees)
B_deg = (n - 1.0) * 360.0 / 365.0
B_rad = np.radians(B_deg) # ¥ A9 % sin/cos A

Et_minutes = 229.18 * (0.000075 + 0.001868 =*
np.cos(B_rad) - 0.032077 * np.sin(B_rad) \

- 0.014615 * np.cos(2 * B_rad)
- 0.040849 * np.sin(2 * B_rad))
BN 2!

return Et_minutes

def calculate_hour_angle(df_column_local_time_hour,
df_column_Et_minutes, df_column_longitude_deg,
df_column_std_meridian_deg):
HENA (w), BALRE.
fit E AL PEAH O DataFrame %1,

2
df_column_local_time_hour (pd.Series): AHubrAERS[aE]H
/NI R
df_column_Et_minutes (pd.Series): it (4#h).
df_column_longitude_deg (pd.Series): WS4 ().
df_column_std_meridian_deg (pd.Series or float): M
WS AER X ARE R 2 (B .
CHilt, Jbxt
I [F] UTC+8, i 120 FEARE)
U Fr A £
P RERAE — T IX, X BT DU — AN 2 E

AEIR

pd.Series: W (w), Hf72E.

FORFHES (LST) H&, #hi: /i

LST = AHARHERE] + Et/60 + (FRiE&Zk — SEPREFE)*U 4y
/60 /Ny

(WpiERZ - SERZEE)*U 0o XAMBIET, KRG ER W,
I [A] 2 O g b

longitude_correction_hours =

(df_column_std_meridian_deg - df_column_longitude_deg) * 4.0
/ 60.0

29

1st_hours = df_column_local_time_hour

df_column_Et_minutes / 60.0 + longitude_correction_hours

def

BIMA (w), IE280, NFRIE, BAAR
omega_degrees = (lst_hours - 12.0) * 15.0

WA

return omega_degrees

calculate_solar_altitude_angle(df_column_latitude_deg,
df_column_delta_deg, df_column_omega_deg):

\

HEAKMEEAA (as), BALEE.
it &4 A 2= DataFrame %1,

ZH

df_column_latitude_deg (pd.Series): #i[¥ (¢), .

df_column_delta_deg (pd.Series): #4iffi (8), PAfIJE.
df_column_omega_deg (pd.Series): Wi (w), HAIFE.

A EIR

pd.Series: KFH&EM (as), Hf7f.

phi_rad = np.radians(df_column_latitude_deg)
delta_rad = np.radians(df_column_delta_deg)
omega_rad = np.radians(df_column_omega_deg)

sin_alpha_s = np.sin(phi_rad) * np.sin(delta_rad)

np.cos(phi_rad) * np.cos(delta_rad)

np.cos(omega_rad)

def

arcsin M5 R 2INE, HEENE

+

+

*

alpha_s_rad = np.arcsin(np.clip(sin_alpha_s, -1.0,
1.0)) # clip MAfRfETE-1)1 21, &% arcsin R4S

alpha_s_degrees = np.degrees(alpha_s_rad)

KMHZ &

return alpha_s_degrees

calculate_solar_azimuth_angle(df_column_latitude_deg,

df_column_delta_deg,

df_column_omega_deg):

30

df_column_alpha_s_deg,

TFEOKBH AN A (ys), A2,
(EX: IEMAN 0, RAWIE, &HTFI6FERD
fit E 4L FAH ¢ DataFrame %1,

S

df_column_latitude_deg (pd.Series): 4 (¢), HfifE.

df_column_delta_deg (pd.Series): #4ifi (8), PAfIfE.

df_column_alpha_s_deg (pd.Series): KFMH=E/Ef (as),
PR

df_column_omega_deg (pd.Series): W (w), FAIE,

U EIR

pd.Series: KPHANfH (ys), HALEL.

phi_rad = np.radians(df_column_latitude_deg)
delta_rad = np.radians(df_column_delta_deg)
alpha_s_rad = np.radians(df_column_alpha_s_deg)

cos_gamma_s_numerator = np.sin(alpha_s_rad) =*
np.sin(phi_rad) - np.sin(delta_rad)

cos_gamma_s_denominator = np.cos(alpha_s_rad) =*
np.cos(phi_rad)

EERRRLL 0 BB DL (CRPFAAE R -2y, 73REn] B4 0)
2 alpha_s #%ir 90 & (CKRTH) ¢ 0 & (L) i, Jihifie
AT B AR E B R X
JATX B — MR/ E R S B R LA 0 BUBHR
cos_gamma_s = np.divide(cos_gamma_s_numerator,
cos_gamma_s_denominator,
out=np.zeros_like(cos_gamma_s
_numerator),
where=np.abs(cos_gamma_s_deno

minator) > 1e-9) # {WESTEAN O KiHHE

gamma_s_rad_abs = np.arccos(np.clip(cos_gamma_s, -
1.0, 1.0)) # clip HifRMEA-1 3 1 1A
gamma_s_degrees_abs = np.degrees(gamma_s_rad_abs)

MRAEI A w BT S WAL A IR S CRAEIE)
gamma_s_degrees = np.where(df_column_omega_deg < 0,
—gamma_s_degrees_abs, gamma_s_degrees_abs)

RPIRACEE. HOKFAmEM <=0 I, TAiME S, ALY NaN

31

5 0
gamma_s_degrees = np.where(df_column_alpha_s_deg <=
©, np.nan, gamma_s_degrees)

K FRAEMRAN 7 1)

return gamma_s_degrees

def
calculate_extraterrestrial_normal_irradiance(df_column_date
N):
THHEREINEERIR SRS (Gon), HALE W/m™2.
&AL ¥ DataFrame [1) dateN 7.

2
df_column_dateN (pd.Series): —EHHE /LK (n).

A EIR

pd.Series: KRASMNZEERIKPHEEST (Gon), HAL W/m"2.

n = df_column_dateN

gon = G_sc * (1 + 0.033 * np.cos(np.radians(360.0 =*
n / 365.0)))

JFahReE!

return gon

def calculate_clear_sky_irradiances(df_column_Gon,
df_column_alpha_s_deg, tau_b=TAU_B_DEFAULT,
tau_d=TAU_D_DEFAULT):
il B 23 2% A T 1992 1) B EERE S (Genb)) FKF I HU a4 (Gedh) .
PA S K1 VAR (Geh) .
KR —ANEMLRREEL, tau_b A1 tau_d ZZK R

2
df_column_Gon (pd.Series): KA/MNEEFIKHES (W/m 2).
df_column_alpha_s_deg (pd.Series): K& EMA ().
tau_b (float): HEHIHEN AT REL.
tau_d (float): HHEHNMELKZENFZE (HT G.on *
sin(alpha_s) #$41)-

IR\
tuple: (Genb_series, Gcdh_series, Gch_series)

Genb: VEREEAES (W/m~2)

32

Gedh: KBRS (W/m"2)

Geh: K dEs (w/m"2)
alpha_s_rad = np.radians(df_column_alpha_s_deg)
sin_alpha_s = np.sin(alpha_s_rad)

OKFHAEHTZE DU, FRN 0

is_sun_up = df_column_alpha_s_deg > 0
Genb = df_column_Gon * tau_b * is_sun_up

Gedh = Gon * sin(as) * td (FETHHEHAHFLEE)
S XHEEK Gon * sin(as) & KASMNZ/KF RS
Gecdh = df_column_Gon * sin_alpha_s * tau_d =*
is_sun_up
Gecdh = np.maximum(@, Gecdh) # #ffRIES

Gch = Genb * sin(as) + Gecdh

Gech = Genb * sin_alpha_s + Gcdh

Gech = np.maximum(@, Gch * is_sun_up) # #A{RIEGH KR
THENAH

i RS S DL &
return Genb, Gecdh, Gch

def calculate_poa_irradiance(df_column_Gcnb,
df_column_Gcdh, df_column_Gch,
df_column_alpha_s_deg,
df_column_gamma_s_deg,
df_column_panel_tilt_beta_de
g, df_column_panel_azimuth_gamma_deg,
rho_g=RHO_G_DEFAULT):
T HEE MR RIR M E4EST (GT - POA Irradiance), HfV
W/m"2,
fIt AL H A2 DataFrame 4.

ZH

df_column_Gcnb (pd.Series): LA E#EHES (W/m"2).
df_column_Gcdh (pd.Series): /KTt s (W/m"2).
df_column_Gch (pd.Series): /KFifi&4&ES (W/mr2).
df_column_alpha_s_deg (pd.Series): KMH&EEM (F).
df_column_gamma_s_deg (pd.Series): KFfif ().
df_column_panel_tilt_beta_deg (pd.Series or float):

33

JefRi s (B), AR,
df_column_panel_azimuth_gamma_deg (pd.Series or
float): JeiRB M C(y), HALEE.
rho_g (float): Hujffif=.

U EIR
pd.Series: MiRHHSES (GT), A7 W/m"2,
alpha_s_ra np.radians(df_column_alpha_s_deg)
gamma_s_ra np.radians(df_column_gamma_s_deg)
beta_rad = np.radians(df_column_panel_tilt_beta_deg)
panel_gamma_rad =
np.radians(df_column_panel_azimuth_gamma_deg)

d =
d =

IFEANS IR cos(8)

cos_theta = np.sin(alpha_s_rad) * np.cos(beta_rad) +
\
np.cos(alpha_s_rad) * np.sin(beta_rad) =*
np.cos(gamma_s_rad - panel_gamma_rad)
cos_theta = np.maximum(@, cos_theta) # #ifRIEf, KFH
ERCT N 0

OKPRAESBF 28 LR BRI /1 >90 FEI, EREEES N 0
is_sun_up_on_panel = (df_column_alpha_s_deg > 0) &
(cos_theta > le-6) # A~/ EIMEE G iF 0]

iR B S (GbT)

GbT = df_column_Gecnb * cos_theta * is_sun_up_on_panel

WURHE R HUR RS (GAT) - Liu & Jordan & fa) [A) %A
GdT = df_column_Gcdh * (1 + np.cos(beta_rad)) / 2.0
* (df_column_alpha_s_deg > 0) # {4 AKHTHE

AGURH T SR AR S (GgT)
GgT = df_column_Gch * rho_g * (1 - np.cos(beta_rad))
/ 2.0 x (df_column_alpha_s_deg > 0) # {4 KBHTHE

BRI B AES (GT)
GT = GbT + GdT + GgT
GT = np.maximum(@, GT) # WAiffHEL&4EMAEN

OGRS BRI SE 1 FR) B G 56

return GT

34

def calculate_theoretical_power(df_column_GT_poa,
df_column_P_install):
HEIEE AR IR (P_theoretical), ¥{i5 P_install —#.
ft = AL FAHSC DataFrame 4.

ZH:

df_column_GT_poa (pd.Series): Mgl 4&5 (GT), A
W/m"2,

df_column_P_install (pd.Series or float): HIiHENAE
CEfrfilan W B kw B8 Mw).

R[]
pd.Series: M g W K Ih#%E (P_theoretical), #fi 5
P_install —3#.
P_theoretical = P_install * (GT / G_STC)
7= P_install MHfz, @12 P_install & MW, 11 GT &
W/m*2, G_STC & W/m"2,
4 P_theoretical th</Z MW.
P_theoretical = df_column_P_install *
(df_column_GT_poa / G_STC) / 1000000

IR TRANEL AR (Ey—Rf g ERZH)
JF HeafrAER
P_theoretical = np.clip(P_theoretical, 0,
df_column_P_install)

AP R R E

return P_theoretical

—— FhiERE —
def run_probleml_calculations(df,
dateN_col="dateN',
latitude_col='Dimensions',
longitude_col="'longitude’',
panel_tilt_col='beta',
panel_azimuth_col='gamma',
p_install_col='P_install’,
local_time_hour_col="local_
time_hour_of_day', # FEMRHE 'date' FAIEX 75
std_meridian_deg=120.0, # f&
B ML, i EZRNIX 120 &
tau_b=TAU_B_DEFAULT,

35

tau_d=TAU_D_DEFAULT,
rho_g=RHO_G_DEFAULT
):

PAT I @ — T AT H 2P IR, oK A e 25 SR A A HS TR Es i 2
DataFrame .

2
df (pd.DataFrame): &M AZIEN DataFrame.
WA E LU A4 (Bl S e ES4)
- dateN_col: —FHHZEJLR (n)
- latitude_col: 4 (¢), &
- longitude_col: £/F (A), J¥ (i
B Sty 0 AbEE, FERTIEA)
- panel_tilt_col: JuiRktrMmifm (B), &
- panel_azimuth_col: Y&IRHR5HifA
(v), B ClRokkodz 0 03, FEaiiHn)
- p_install_col: M % &E
(P_install)
- local_time_hour_col: AHbbrAERS[A]
ff/NEHE (0-23.99)
std_meridian_deg (float): WfXPr#ELLE, fZ.
tau_b, tau_d, rho_g (float): K& KM SR SH.

A EIR
pd.DataFrame: H§ fn 7 B 1 it & 7 (& & & W
'P_theoretical') f/545 DataFrame.
szl 'delta_deg', 'Et_minutes',

'omega_deg', 'alpha_s_deg',

'gamma_s_deg', 'Gon_Wm2',
'Genb_Wm2', 'Gecdh_Wm2',

'Geh_Wm2', 'GT_poa_Wm2',
'P_theoretical'

WhORZ AR T AL A BRI 4% 0 A3
df[longitude_col] = df[longitude_col].fillna(0)

df[panel_azimuth_coll]
df[panel_azimuth_col].fillna(0)

0 INIE) SR A R A
df['delta_deg'] =
calculate_declination_angle(df[dateN_coll])
df['Et_minutes"'] =
calculate_equation_of_time(df[dateN_col])

36

df['omega_deg'] =
calculate_hour_angle(df[local_time_hour_col],
df['Et_minutes'], df[longitude_col], std_meridian_deg)

1 KFHERZEFHIINE
df['alpha_s_deg'] =
calculate_solar_altitude_angle(df[latitude_col],
df['delta_deg'], df['omega_deg'])
df['gamma_s_deg'] =
calculate_solar_azimuth_angle(df[latitude_coll],
df['delta_deg'], df['alpha_s_deg'], df['omega_deg'])

2 WEAT BOKPHAR S 9
df['Gon_Wm2"'] =
calculate_extraterrestrial_normal_irradiance(df[dateN_col])
df['Genb_wWm2'], df['Gcdh_Wm2'], df['Gch_wWm2'] =
calculate_clear_sky_irradiances(
df['Gon_Wm2'], df['alpha_s_deg'], tau_b=tau_b,
tau_d=tau_d
)

3 FHOGIAEMTRIF DGR b

df['GT_poa_Wm2'] = calculate_poa_irradiance(
df['Genb_Wm2'], df['Gedh_Wm2'], df['Gch_wm2'],
df['alpha_s_deg'], df['gamma_s_deg'],
df[panel_tilt_col], df[panel_azimuth_coll],
rho_g=rho_g

)

4 R DR AT
df['p_logic'] =
calculate_theoretical_power(df['GT_poa_Wm2'],
df[p_install_col])

print("DataFrame CLAHE#H! ")
return df

def helloworld():
print("Hello World!")

if __name__ == "__main__":
try:
dfl = pd.read_csv("testprobleml.csv")
Wift 'local_time_hour_of_day' 776, MFERH

37

'date' FIERKIT)

% @ : dfi['local_time_hour_of_day'] =
pd.to_datetime(dfl['date']).dt.hour +
pd.to_datetime(dfl['date']).dt.minute / 60.0

IRITE JRER YA LT dfl

A RS (% std_meridian_deqg “5Z%f# FHERIA
1E)
df_calculated =
run_probleml_calculations(dfl.copy()) # ffH .copy() #
SettingWithCopyWarning

(R4 R DataFrame #3711 Excel XCfF
df_calculated.to_csv("testprobleml_with_calculat
ions.csv", index=False)
print("\n & ¥ i & 4 R &k F# 3

testprobleml_with_calculations.csv")

except FileNotFoundError:
print(f"#% 4~ #| testprobleml.csv ff, iHKE /K2
FAFE")
except KeyError as e:
print(f"DataFrame H#F &b T EKZF]: {e}, HE
Excel SCfFRISI4 & 75 SRR I 1 — ")
except Exception as e:

print(F"&&E T —DERIZAMIER: {e}")
5] &% 2 LR K% AR

import pandas as pd

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error # HT /54
A RE A PP

import joblib # H T-{RIEFIMM#EMLE /scaler

import os # A THuE =& HAAAE

——— WA MEENEREE ——-

PROCESSED_EXCEL_PATH = 'problem2_processed.xlsx' # L—
AbFRZE R Excel SCAF

TRAIN_SHEET_NAME = 'train'

TEST_SHEET_NAME = 'test'

OUTPUT_EXCEL_PATH = 'problem2_forecast_results.xlsx' #

38

TRAF B 28 TINS5 R (1038 Excel SCAF

FAURN Scaler {R1F#k1E
MODEL_PATH = 'linear_regression_model. joblib'
SCALER_PATH = 'min_max_scaler. joblib'

#ABRRIX R A Y I SR f 1 E R AIE 44 PR 21 A0
X UCRHIE 4 7R SRR TR PR b 1) ok
FEATURE_NAMES_IN_ORDER = [
'power_lag_1"', 'power_lag_2', 'power_lag_3"',
'power_lag_u', # i 1/
'power_lag_96', # 1 Kuij[FE—Af %]
'power_lag_192', # 2 Kyl —H %l
'power_lag_672"', # 1 JEHE K%
'"hour_sin', 'hour_cos',
'dayN_sin', 'dayN_cos',
'dayofweek_sin', 'dayofweek_cos' # fEi%iNA T 2 HHFHIE
]
ORI LI RURFAE, A 5 JRAT TSR F 2 A i i T TR e K
Wi, wH 'power_lag_1' F7E, A4 1uifEsRE
SPECIFIC_LAGS_USED = [1, 2, 3, 4, 96, 192, 672] # 5
FEATURE_NAMES_IN_ORDER [power_lag_x X}
MAX_LAG = max(SPECIFIC_LAGS_USED) if SPECIFIC_LAGS_USED
else 0

def create_features(df,
target_col_name='power_normalized', is_training=True):
4 DataFrame G & 5 FEAE AN A 4FAE .
RS, BFrgl y et RPYETE) target_col_name).
W N TNE & BN, T target_col_name ~H T y.
print(f" 1E & A ¥ T & FF MR KRB (R T
'{target_col_name}')...")
df_featured = df.copy()

a. QIEWERHIE
SPECIFIC_LAGS_USED & 3 J FAITEL G i Wb L ity J 0
for lag in SPECIFIC_LAGS_USED:
df_featured[f'power_lag_{lag}']
df_featured[target_col_name].shift(lag)

b. G A4SE
5% 5] & DatetimeIndex

39

if not isinstance(df_featured.index,
pd.DatetimeIndex):

raise ValueError("DataFrame [/ & 5| & Zii &
DatetimeIndex A REGIAESARFAE! ")

df_featured['local_time_hour_of_day"']
df_featured.index.hour + df_featured.index.minute / 60.0
df_featured['dateN'] = df_featured.index.dayofyear
df_featured['dayofweek"'] =
df_featured.index.dayofweek # Monday=0, Sunday=6

df_featured['hour_sin'] = np.sin(2 * np.pi =*
df_featured['local_time_hour_of_day'] / 24.0)

df_featured['hour_cos'] = np.cos(2 * np.pi =*
df_featured['local_time_hour_of_day'] / 24.0)

df_featured['dayN_sin'] = np.sin(2 * np.pi =*
df_featured['dateN'] / 365.25)

df_featured['dayN_cos'] = np.cos(2 * np.pi =*

df_featured['dateN'] / 365.25)
df_featured['dayofweek_sin']

df_featured['dayofweek'] / 7.0)
df_featured['dayofweek_cos']

df_featured['dayofweek'] / 7.0)

np.sin(2 * np.pi =*

np.cos(2 * np.pi =*

if is_training:
EXHWEEZE y (T il%, v 82 4arm
'power_normalized')
df_featured['y_target'] =
df_featured[target_col_namel
JH BRI S AR) NaN B CEEE DI ZRARFAE #E 25 1)
df_featured.dropna(inplace=True) # Mi{RHTH AT
MHPTHEAE

{77 H 7 FEATURE_NAMES_IN_ORDER H(¥)%1| #i7-4E
for col_name in FEATURE_NAMES_IN_ORDER:
if col_name not in df_featured.columns:
XR-AEENE, WRBERYIZGRREX BEAER, 5
T2
raise KeyError(f"#fft LiE)5, HI1EHIFFALES
"{col_name}' A fF 7 ! 1§ f& & create_features K # M
FEATURE_NAMES_IN_ORDER. ")

print ("FHAEAARIHTIE ! ")
return df_featured

40

def get_initial_history(df_train_power_normalized_col,
test_period_start_time,
max_lag_needed):
"SR SIS AT B S TR 1 S VA A Th A R,
(VRS AT RCAS AL, B fR B BE LA A)
history_end_time = test_period_start_time -
pd.Timedelta(minutes=15)
relevant_train_data =
df_train_power_normalized_col[df_train_power_normalized_col
.index <= history_end_time] # /] <= D &HR
if len(relevant_train_data) < max_lag_needed:
raise ValueError(f" il Z ¥ # £
{test_period_start_time} X HiHI##E AL {max_lag_needed} 3%
({len(relevant_train_data)}s%), kAL EWRIRIMEIL ")
initial_history = vrelevant_train_data.iloc[-
max_lag_needed:].tolist()
return initial_history

def create_time_features_for_timestamp(timestamp):
"N BN ORR I TR B U ST E SN TR R
features = {}
local_time_hour = timestamp.hour + timestamp.minute
/ 60.0
day_of_year = timestamp.dayofyear

day_of_week = timestamp.dayofweek
features['hour_sin'] = np.sin(2 * np.pi =*
local_time_hour / 24.0)
features['hour_cos'] = np.cos(2 * np.pi =*

local_time_hour / 24.0)

features['dayN_sin'] = np.sin(2 * np.pi * day_of_year
/ 365.25)

features['dayN_cos'] = np.cos(2 * np.pi * day_of_year
/ 365.25)

features['dayofweek_sin'] = np.sin(2 * np.pi =*
day_of_week / 7.0)
features['dayofweek_cos'] = np.cos(2 * np.pi =*

day_of_week / 7.0)
return features

def
construct_feature_vector_for_step(current_power_history,
time_features_for_th

41

is_step,
all_feature_names_or
dered,
specific_lags_indice
s):
AR 5 D U SR UREAE, SRR AR O AT RAE P
(VRS AT RCAS AL, B O/ B e LA A)
feature_dict = {}
for lag_val in specific_lags_indices:
feature_name = f'power_lag_{lag_val}'
if feature_name in all_feature_names_ordered:
if len(current_power_history) >= lag_val:
feature_dict[feature_name] =
current_power_history[-lag_val]
else:
raise ValueError(f"Jj S JFHIABK, ToiLIREL
{feature_name}")
feature_dict.update(time_features_for_this_step)

feature_vector_values = [feature_dict[name] for name
in all_feature_names_ordered]
return np.array(feature_vector_values).reshape(l, -

1)

def perform_iterative_forecast_for_period(trained_model,
initial_power_hi

story,

period_start_tim
el

num_steps_to_for
ecast,

feature_names_or
dered_1list,

max_lag_val,

specific_lags_id

x_list):

MO ANRERE B T R AT AT .

(ML Z AT AL, B iR E RE LR TAF)
predictions_normalized = []

current_history = list(initial_power_history)
current_time = pd.Timestamp(period_start_time)

print(f" J 4 & & W] {period_start_time} it 17

42

{num_steps_to_forecast} FiE LT, .. ")
for i in range(num_steps_to_forecast):
time_features =
create_time_features_for_timestamp(current_time)
feature_vector =
construct_feature_vector_for_step(
current_history,
time_features,
feature_names_ordered_list,
specific_lags_idx_list

)

predicted_norm_power_step
trained_model.predict(feature_vector)[0]
predictions_normalized.append(predicted_norm_pow
er_step)

current_history.pop(0)
current_history.append(predicted_norm_power_step)
current_time += pd.Timedelta(minutes=15)
if (i + 1) % 96 == 0:
print(f" O {(d + 1) // 96} Ry (it
{num_steps_to_forecast//96}Kx)...")
print(F" A {period_start_time} FHMlZER! ")
return predictions_normalized

def inverse_transform_predictions(predictions_norm_list,
fitted_scaler):
"R I A B TR 21 R T A O SR R R,
predictions_2d =
np.array(predictions_norm_list).reshape(-1, 1)
predictions_actual_scale_2d =
fitted_scaler.inverse_transform(predictions_2d)
return predictions_actual_scale_2d.flatten().tolist()

——— ERFZH -

def main():
nNNSERCHAT T R B BRI SR, TS PRAE AR
try:

1. SREUGELT IR IR G
print(f" IE 7£ & B 2 & # K Excel X 4 :
' {PROCESSED_EXCEL_PATH}'...™)
if not os.path.exists(PROCESSED_EXCEL_PATH):
print(f" HEE{EIR ! WA B L — DA B 4T 5 S
' {PROCESSED_EXCEL_PATH}'. ")

43

print ("X AMHAREE CEET T EIRE AT —1, I
B g ARz . ™)

print("WIRILEA, TEIET N AL PR

return

df_train_loaded =
pd.read_excel(PROCESSED_EXCEL_PATH,
sheet_name=TRAIN_SHEET_NAME)

df_test_loaded =
pd.read_excel(PROCESSED_EXCEL_PATH,
sheet_name=TEST_SHEET_NAME)

Witk 'date' %2 datetime RAIFENERT
for df_ in [df_train_loaded, df_test_loaded]:
if 'date' not in df_.columns:
raise KeyError("'date' %7t Excel A Z,
HmAL ")
df_['date'] = pd.to_datetime(df_['date'])
df_.set_index('date', inplace=True)

print ("UIZEMNNAELTE CBRAIFFREFH RG] ")
print(£"JFEEIIZ4E RN : {len(df_train_loaded)}, J&
HMREE RN {len(df_test_loaded)}")

2. FHETHRE (FEIZE D)
ANIFEE 'power_normalized' HIHEATHE G A EAMIEN
HFr
if 'power_normalized' not in
df_train_loaded.columns:
raise KeyError(" Il 4 £ F & A~ F|
'power_normalized' %I, JiEFHATHRAE TEEMIIZR! ")

df_train_featured =
create_features(df_train_loaded,
target_col_name='power_normalized', is_training=True)

if df_train_featured.empty:
print ("FHIE TR ZREHE v, W AR R I Bl K
HHHEAE . BFE. ")

return

X_train =
df_train_featured[FEATURE_NAMES_IN_ORDER]
y_train = df_train_featured['y_target'] #

44

'y_target' & 'power_normalized'

3. ISRt AR

print("\n FFIEIIZRLEPERIFBER ., .. ")
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
print ("ZAEREIABALYIZRE K, ")

(k) fRARY
joblib.dump(linear_model, MODEL_PATH)
print (" 1% I frfF2]: {MODEL_PATH}")

4. #14 Scaler (&R 'power_cleaned' %) L)
AT & 'power_cleaned' % ff T
df_train_loaded ', FHT#f%E R abHdE Vo HE
if 'power_cleaned' not in df_train_loaded.columns:
raise KeyError("il%&EH# A% 'power_cleaned'
b, JoiE A Scaler DA THideHe! ")

scaler_to_fit = MinMaxScaler(feature_range=(0,

1))

Scaler 7t fit KHHEHEHIA 2D 1

scaler_to_fit.fit(df_train_loaded[['power_cleane
d'11) # HiEWE. H—AbRrrEdEaEk fit

print("MinMaxScaler T 7EIIZEER 'power_cleaned' #{
i ElE R ")

(7lik) fRfF scaler

joblib.dump(scaler_to_fit, SCALER_PATH)

print(f"Scaler C.frf7%|: {SCALER_PATH}")

——— IR AR AT T ——-

df_test_predictions = df_test_loaded.copy() # f
gt I A DAV I s 271

df_test_predictions['predicted_power_normalized']
= np.nan

df_test_predictions['predicted_power_actual']
np.nan

U0 4]
time_diffs =
df_test_predictions.index.to_series().diff()
period_starts_indices =
df_test_predictions.index[(time_diffs
pd.Timedelta(minutes=15)) | (time_diffs.isnull())]
print(f"\n 7 W & £ F H G FH

45

{len(period_starts_indices)} FMAEMAMKITGG M. ")
num_steps_per_period = 7 * 24 * 4

for start_dt_of_period in period_starts_indices:
print(f"\n-—- 1E/E M {start_dt_of_period} Jf
SR T R JE AT ——-")

initial_history_norm = get_initial_history(
df_train_loaded['power_normalized'], # H
WIZREE A — A D AR i
start_dt_of_period,
MAX_LAG

if not initial_history_norm or
len(initial_history_norm) < MAX_LAG:
print(f" ik~ {start_dt_of_period} #EHX
RS IRIEE P s, B . ")

continue

normalized_preds_for_period
perform_iterative_forecast_for_period(
linear_model, # fFHFRATINIVIZRLT HA5E Y
initial_history_norm,
start_dt_of_period,
num_steps_per_period,
FEATURE_NAMES_IN_ORDER,
MAX_LAG,
SPECIFIC_LAGS_USED
)

T LTI L U A H PR ST] AR
target_timestamps_in_test
df_test_predictions.loc[start_dt_of_period :
start_dt_of_period + pd.Timedelta(days=7) -
pd.Timedelta(minutes=15)].index

if Tlen(normalized_preds_for_period) ==
len(target_timestamps_in_test):

df_test_predictions.loc[target_timestamp
s_in_test, 'predicted_power_normalized'] =
normalized_preds_for_period

46

AT 1k
actual_scale_preds_for_period =
inverse_transform_predictions(
normalized_preds_for_period,
scaler_to_fit # fFHIRAINIHLA K] scaler
)
df_test_predictions.loc[target_timestamp
s_in_test, 'predicted_power_actual'] =
actual_scale_preds_for_period
print(f" i1 {start_dt_of_period} KTl
CIHFE. ")
else:
print(f" Z&! Y {start_dt_of_period}
K ({len(normalized_preds_for_period)}) Silli4E it v
BB E ({len(target_timestamps_in_test)}) AULEC! ™)

#ORAFEL PN 25 B BN AR (R AR I 2R 48D R8T I Excel
A
print(f"\n IE 76 K 0 &5 3R Or 77 2 Excel LA :
' {OUTPUT_EXCEL_PATH}'...")
with pd.ExcelWriter(OUTPUT_EXCEL_PATH) as writer:
df_train_loaded.reset_index().to_excel(write
r, sheet_name=TRAIN_SHEET_NAME, index=False)
df_test_predictions.reset_index().to_excel(w
riter, sheet_name=TEST_SHEET_NAME, index=False)
print(f" i W 4 X © W U R £ ! F
'{OUTPUT_EXCEL_PATH}' ' ")

except FileNotFoundError:
print (f"# A %] Excel 34 ' {PROCESSED_EXCEL_PATH}',
TR ENIAE R — H%, BCEBARIER ! ")
except KeyError as e:
print(f"DataFrame F {450 1748 {e}' K, &k
& Excel X s4, BOE ORI ZRAORFAE /AL)
import traceback
traceback.print_exc()
except Exception as e:
print (" &4& 7 —MEBZAMIHR: {e}")
import traceback
traceback.print_exc()

if __name__ == "__main__":
main()

47

5] &5 2 SVR IR O ARAS

import pandas as pd
import numpy as np
from sklearn.svm import SVR

from sklearn.preprocessing import MinMaxScaler,
StandardScaler # MinMaxScaler H T Hiniif#t, StandardScaler
THRHESE TN

from sklearn.metrics import mean_squared_error # HT/54:
AT HE A PEA

import joblib # M T-RAFFIM#EEA/scaler

import os # A TH&EXMFR G

import time # ATt SVR gk

——— UFAMEEN AR RE -

PROCESSED_EXCEL_PATH = 'problem2_processed.xlsx' # bL—
AbERLE) Excel SCfF

TRAIN_SHEET_NAME = 'train'

TEST_SHEET_NAME = 'test'

OUTPUT_EXCEL_PATH = 'problem2_SVR_forecast_results.xlsx'

{RAF SVR T 45 B 1# Excel X

AR Scaler RI7ETE

SVR_MODEL_PATH = 'svr_model. joblib'

FEATURE_SCALER_SVR_PATH = 'feature_scaler_svr.joblib' #
SVR ¥ NFFIE) scaler

TARGET_SCALER_PATH = 'target_min_max_scaler.joblib' #
B AT power_normalized) scaler (Ul {#7F)

——— FHMETREMERSHROE (SEUERAE R —EL DMEEED
FEATURE_NAMES_IN_ORDER = [
'"power_lag_1", '"power_lag_2', '"power_lag_3',
'"power_lag_4u',
'power_lag_96',
'power_lag_192"',
'power_lag_672"',

'"hour_sin', 'hour_cos',
'dayN_sin', 'dayN_cos',
'dayofweek_sin', 'dayofweek_cos'

]
SPECIFIC_LAGS_USED = [1, 2, 3, 4, 96, 192, 672]
MAX_LAG = max(SPECIFIC_LAGS_USED) if SPECIFIC_LAGS_USED

48

else O

--— Helper Functions (5Zktk[ElEIIA 0L, RIET%RS
D -—-

def create_features_svr(df,
target_col_name_for_lags='power_normalized',
is_training=True):
4y DataFrame G o R AEAN AVRFAE - (5 et [m] U5)R ik A —
EIQP
print(f" IE £ & SVR 4T i& #F fE B oK P (& T
'{target_col_name_for_lags}')...")
df_featured = df.copy()

for lag in SPECIFIC_LAGS_USED:
df_featured[f'power_lag_{lag}']
df_featured[target_col_name_for_lags].shift(lag)

if not isinstance(df_featured.index,
pd.DatetimeIndex):

raise ValueError("DataFrame [& 5| & 41 &
DatetimeIndex! ")

df_featured['local_time_hour_of_day"']
df_featured.index.hour + df_featured.index.minute / 60.0
df_featured['dateN'] = df_featured.index.dayofyear
df_featured['dayofweek'] =
df_featured.index.dayofweek

df_featured['hour_sin'] = np.sin(2 * np.pi =*
df_featured['local_time_hour_of_day'] / 24.0)

df_featured['hour_cos'] = np.cos(2 * np.pi =*
df_featured['local_time_hour_of_day'] / 24.0)

df_featured['dayN_sin'] = np.sin(2 * np.pi =*
df_featured['dateN'] / 365.25)

df_featured['dayN_cos'] = np.cos(2 * np.pi =*

df_featured['dateN'] / 365.25)
df_featured['dayofweek_sin']

df_featured['dayofweek'] / 7.0)
df_featured['dayofweek_cos']

df_featured['dayofweek'] / 7.0)

np.sin(2 * np.pi =*

np.cos(2 * np.pi =*

49

if is_training:

df_featured['y_target']
df_featured[target_col_name_for_lags]
df_featured.dropna(inplace=True)

for col_name in FEATURE_NAMES_IN_ORDER:
if col_name not in df_featured.columns:
raise KeyError(f"4f#ff Li2)5, HIEEMHFAES
"{col_name}' ANEFE! ")

print("SVR HIFFERURIATIE B! ")
return df_featured

def
get_initial_history_svr(df_train_power_normalized_col,
test_period_start_time,
max_lag_needed):
"SRR SIS AT B 7 R aa I S — AR Th A A, e
(SZERERCAAME)
history_end_time = test_period_start_time -
pd.Timedelta(minutes=15)
relevant_train_data =
df_train_power_normalized_col[df_train_power_normalized_col
.index <= history_end_time]
if len(relevant_train_data) < max_lag_needed:
raise ValueError(f" ¥l % % # o+ &
{test_period_start_time} X iR AL {max_lag_needed} 4%
({len(relevant_train_data)}s), LikfRfLewmwiaamLz! ")
initial_history = vrelevant_train_data.iloc[-
max_lag_needed:].tolist()
return initial_history

def create_time_features_for_timestamp_svr(timestamp):
"N BN IR R I TR B U ST R SN TR R
(HZERERAME)
features = {}
local_time_hour = timestamp.hour + timestamp.minute
/ 60.0
day_of_year = timestamp.dayofyear
day_of_week = timestamp.dayofweek

features['hour_sin'] = np.sin(2 * np.pi =*
local_time_hour / 24.0)
features['hour_cos']

np.cos(2 * np.pi =*

50

local_time_hour / 24.0)
features['dayN_sin']
/ 365.25)
features['dayN_cos'] = np.cos(2 * np.pi * day_of_year
/ 365.25)

np.sin(2 * np.pi * day_of_year

features['dayofweek_sin'] = np.sin(2 * np.pi =*
day_of_week / 7.0)
features['dayofweek_cos'] = np.cos(2 * np.pi =*

day_of_week / 7.0)
return features

def
construct_feature_vector_for_step_svr(current_power_history,
time_features_fo

r_this_step,

all_feature_name
s_ordered,

specific_lags_in
dices):

"R D SN TR AR, MR RATRE T (SR
DataFrame #AT4i%). """
(5EAERVARRARLL, HIR F7 8, 77 5 2:4)iE % DataFrame)
feature_dict = {}
for lag_val in specific_lags_indices:
feature_name = f'power_lag_{lag_val}'
if feature_name in all_feature_names_ordered:
if len(current_power_history) >= lag_val:
feature_dict[feature_name] =
current_power_history[-lag_val]
else:
raise ValueError(f"Jj S /FHI ALK, ToiLRIL
{feature_name}")
feature_dict.update(time_features_for_this_step)

Ny AR

feature_vector_values = [feature_dict[name] for name
in all_feature_names_ordered]

return np.array(feature_vector_values).reshape(l, -
1) # R[5 NumPy #04H, Ty FA

def
perform_iterative_forecast_for_period_svr(trained_svr_model,
fitted_featur
e_scaler, # FriG: F T4t ifrdm ARk

51

initial_power

_history,

period_start_
time,

num_steps_to_
forecast,

feature_names
_ordered_list,
max_lag_val,
specific_lags
_idx_list):
g MEEE R T KRBT SVRISRHI.
predictions_normalized = []
current_history = list(initial_power_history)
current_time = pd.Timestamp(period_start_time)

print(f" JF 455 SVR i {period_start_time} # 17
{num_steps_to_forecast} HiE LT, .. ")
for i in range(num_steps_to_forecast):
time_features =
create_time_features_for_timestamp_svr(current_time)

MRS ORI FRLF &
raw_feature_vector_np =
construct_feature_vector_for_step_svr(
current_history,
time_features,
feature_names_ordered_list,
specific_lags_idx_list

)

F feature_scaler 4i/CY Al b HIRHIE [F) &
scaled_feature_vector =
fitted_feature_scaler.transform(raw_feature_vector_np)

predicted_norm_power_step
trained_svr_model.predict(scaled_feature_vector)[0]
predictions_normalized.append(predicted_norm_pow
er_step)

current_history.pop(0)
current_history.append(predicted_norm_power_step)
current_time += pd.Timedelta(minutes=15)

if (i +1) % 96 ==

52

print(f" SVR 7% {(i + 1) // 96} KK
W (FE{num_steps_to_forecast//96}x)...")
print(£"SVR & {period_start_time} Fllsgm! ")
return predictions_normalized

def
inverse_transform_predictions_svr(predictions_norm_list,
fitted_target_scaler):
"R A B T A R Oy SR AR R,
(SZVERHRCAHE)
predictions_2d =
np.array(predictions_norm_list).reshape(-1, 1)
predictions_actual_scale_2d =
fitted_target_scaler.inverse_transform(predictions_2d)
return predictions_actual_scale_2d.flatten().tolist()

- LR -
def main_svr():

"USEREPAT SVR AR ACEE . ALK, NS ORAE AR

try:
1. EEEUE
print(f"SVR Jif#: IEFEE OB) Excel XA :
' {PROCESSED_EXCEL_PATH}'...™)

if not os.path.exists(PROCESSED_EXCEL_PATH):
print(f" #= Z $ & ! #H 4 #F
' {PROCESSED_EXCEL_PATH}'. EsciziTH8EERAT—1 b0, ")
return

df_train_loaded
pd.read_excel(PROCESSED_EXCEL_PATH,
sheet_name=TRAIN_SHEET_NAME)

df_test_loaded
pd.read_excel(PROCESSED_EXCEL_PATH,
sheet_name=TEST_SHEET_NAME)

for df_ in [df_train_loaded, df_test_loaded]:
if ‘'date' not in df_.columns: raise

KeyError("'date' 5| /RfE1E")
df_['date'] = pd.to_datetime(df_['date'])
df_.set_index('date', inplace=True)

print("SVR Jiife: WZREMMREL A ")

2. KL LRE (FEUIZREE L)

53

if 'power_normalized' not in
df_train_loaded.columns:

raise KeyError(" Il 4 % + #& A~ |
'power_normalized' %! ")

df_train_featured =
create_features_svr(df_train_loaded,
target_col_name_for_lags='power_normalized',
is_training=True)

if df_train_featured.empty:
print("HHE TG SVR I Nz . FEFdik. ")

return

X_train =
df_train_featured[FEATURE_NAMES_IN_ORDER]
y_train = df_train_featured['y_target'] #
'y_target' & 'power_normalized'

3. 4 SVR B ARHIE X_train
print("\n IE 725 SVR ¥ #ir A\ HF 1F 3 17 45 #E 1L
(StandardScaler)...")
feature_scaler = StandardScaler()
X_train_scaled
feature_scaler.fit_transform(X_train)
joblib.dump(feature_scaler,
FEATURE_SCALER_SVR_PATH) # {R{74FE scaler
print (£"SVR i AFFEf StandardScaler S & {RA7EZ -
{FEATURE_SCALER_SVR_PATH}")

4. JIIZk SVR KA

print("\n JF4EUIZ SVR B (X AJRERRE— i (A Mk) . .. ")

HHM kernel & 'rbf'. C ZIEN{EZ%. gamma /& RBF
R

svr_model = SVR(kernel='rbf', C=1.0, epsilon=0.1,
gamma='scale')

start_time = time.time()

svr_model.fit(X_train_scaled, y_train)

end_time = time.time()

print(f"SVR # R JIZk5E ! A {end_time -

start_time:.2f} #. ")

joblib.dump(svr_model, SVR_MODEL_PATH) # f#f7 SVR
B

print(f"SVR A L fRf7%]: {SVR_MODEL_PATH}")

54

5. #EZHTHRWE#M Scaler (MinMaxScaler)
X scaler MiZZTE 'power_cleaned' L&)
if 'power_cleaned' not in df_train_loaded.columns:
raise KeyError("ill%&E+H# A% 'power_cleaned’
A, ToiEME iR) Scaler! ")

target_scaler = MinMaxScaler(feature_range=(0,
1))
target_scaler.fit(df_train_loaded[['power_cleane
d'11)
joblib.dump(target_scaler, TARGET_SCALER_PATH) #
{*17 H#5 scaler
print(f" H #5 ¥ %% # 1 MinMaxScaler O #£
'power_cleaned' L& JH{r77%]: {TARGET_SCALER_PATH}")

——— JHAXS IS EAT T ———

df_test_predictions_svr = df_test_loaded.copy()

df_test_predictions_svr['predicted_power_normali
zed_svr'] = np.nan

df_test_predictions_svr['predicted_power_actual_
svr'] = np.nan

time_diffs =
df_test_predictions_svr.index.to_series().diff()
period_starts_indices =
df_test_predictions_svr.index[(time_diffs
pd.Timedelta(minutes=15)) | (time_diffs.isnull())]
print(f"\n SVR i 2 : 7 W K £ + 1 5 2
{len(period_starts_indices)} AFMEIHKFFGHH. ")

num_steps_per_period = 7 * 24 * 4

for start_dt_of_period in period_starts_indices:
print(f"\n--- SVR IEfE M {start_dt_of_period}
AR T R IHEAT 0 ——=")

initial_history_norm =
get_initial_history_svr(
df_train_loaded['power_normalized'],
start_dt_of_period,
MAX_LAG

55

if not initial_history_norm or
len(initial_history_norm) < MAX_LAG:
print(f" SVR GiZN {start_dt_of_period}
KRB HITaa Py s, Bhid s Bl ")

continue

normalized_preds_for_period

perform_iterative_forecast_for_period_svr(

svr_model, # fHHIZRLFH SVR FLY

feature_scaler, # {FHAEGFIFHE scaler

initial_history_norm,

start_dt_of_period,

num_steps_per_period,

FEATURE_NAMES_IN_ORDER,

MAX_LAG,

SPECIFIC_LAGS_USED

target_timestamps_in_test
df_test_predictions_svr.loc[start_dt_of_period :
start_dt_of_period + pd.Timedelta(days=7) -
pd.Timedelta(minutes=15)].index

if Tlen(normalized_preds_for_period) ==
len(target_timestamps_in_test):

df_test_predictions_svr.loc[target_times
tamps_in_test, 'predicted_power_normalized_svr'] =
normalized_preds_for_period

actual_scale_preds_for_period =
inverse_transform_predictions_svr(
normalized_preds_for_period,
target_scaler # {fHI G HAF scaler
)
df_test_predictions_svr.loc[target_times
tamps_in_test, 'predicted_power_actual_svr'] =
actual_scale_preds_for_period
print(f" SVR & {start_dt_of_period} [
WM EERE. ")
else:
print(f" SVRZ% 1 {start_dt_of_period}
R TR 52 55 00 HhoR LI B FEANDL T ! ™)

ORAF4S

56

print(f"\n SVRAE: ELEK IS R IRF 2] Excel XM :
' {OUTPUT_EXCEL_PATH}'...")
with pd.ExcelWriter(OUTPUT_EXCEL_PATH) as writer:
df_train_loaded.reset_index().to_excel(write
r, sheet_name=TRAIN_SHEET_NAME, index=False)
df_test_predictions_svr.reset_index().to_exc
el(writer, sheet_name=TEST_SHEET_NAME, index=False)
print(f"SVR T W & H & & h &k £ ! FH
' {OUTPUT_EXCEL_PATH}' ! ")

except FileNotFoundError:
print(f"SVR i & : & A # Excel X fF
' {PROCESSED_EXCEL_PATH}'. ")
except KeyError as e:
print(£"SVR jifE: DataFrame H&/b%] '{e}'. ")
import traceback
traceback.print_exc()
except Exception as e:
print(£"SVR iiife: KAERIZ /IR {e}")
import traceback
traceback.print_exc()

if __name__ == "__main__":
main_svr()

)% 3 LSTM 4% CMRHS

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Input,
Dropout

from tensorflow.keras.callbacks import EarlyStopping,
ReduceLROnPlateau

from sklearn.preprocessing import MinMaxScaler

import joblib

import os

import time

import traceback

——— PRSI EE S RE ——-
DRIVE_BASE_PATH =

57

' /content/drive/MyDrive/elect_cup_2025/"'

POWER_DATA_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
"problem3_all.xlsx')

POWER_TRAIN_SHEET_INPUT = 'train'

POWER_VAL_SHEET_INPUT = ‘'val' # ¥IMIGIFEE TA/ELLHK

POWER_TEST_SHEET_INPUT = 'test'

WEATHER_DATA_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
'normalized_weather_data.xlsx')

WEATHER_HOURLY_SHEET = 'lh_normalized'

WEATHER_DAILY_SHEET = 'ld_normalized'

OUTPUT_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
'problem3_LSTM_NWP_val_sheet_forecast_results_v5.xlsx"') #
B 3 SO A4 SR

LSTM_NWP_MODEL_PATH = os.path.join(DRIVE_BASE_PATH,

'"Lstm_nwp_model_v5.Kkeras"')

TARGET_SCALER_LSTM_NWP_PATH =
os.path.join(DRIVE_BASE_PATH,
'target_min_max_scaler_for_lstm_nwp_v5.joblib"')

——— LSTM BB SH N E (RFFAE) ——-

N_TIMESTEPS = 96

LSTM_UNITS = 100

EPOCHS = 30

BATCH_SIZE = 64

VALIDATION_SPLIT_RATIO AHFHE, K NEATEMLFIIEE T

——— ENRAHE T EBAREY] (RIFAAL) ——-

HOURLY_WEATHER_FEATURES_TO_USE = [
'global_tilted_irradiance_instant',
'direct_normal_irradiance_instant',
'temperature_2m',

'cloud_cover',
'wind_speed_10m',

]

DAILY_WEATHER_FEATURES_TO_USE = [
'sunshine_duration',
'precipitation_hours',
'wind_speed_10m_mean',
'cloud_cover_mean'

58

def clean_column_names_v3(df, prefix=""): # R XIr¥F, &
HAAR
df_cleaned = df.copy()
new_cols_map = {}
for col in df_cleaned.columns:
name_part = str(col).split(' (')[0]
cleaned_name = name_part.replace(’ ',
'_'").replace('/', ‘'_per_').replace('.', '').replace('°"',
'deg')
if prefix:

new_cols_map[str(col)]

f"{prefix}_{cleaned_name}"

else:
new_cols_map[str(col)] = cleaned_name

df_cleaned.rename(columns=new_cols_map, inplace=True)
return df_cleaned

def load_and_prepare_data_v5(): # BREZHH N v5
print("v5 (B EIESE) . HFaandc & £dE . .. ")
if not os.path.exists(POWER_DATA_EXCEL_PATH):
raise FileNotFoundError(f" & /A 3| o F % ¥ 1
' {POWER_DATA_EXCEL_PATH}'! ")
if not os.path.exists(WEATHER_DATA_EXCEL_PATH):
raise FileNotFoundError(f" & A 3| K < % ¥ 1

' {WEATHER_DATA_EXCEL_PATH}'! ")

df_train_power = pd.read_excel(POWER_DATA_EXCEL_PATH,

sheet_name=POWER_TRAIN_SHEET_INPUT)
df_val_power = pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_VAL_SHEET_INPUT) # JIN#RIiE4ETh =4
df_test_power = pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_TEST_SHEET_INPUT)

OISR, Jaib. AR A Th AR R AT HH [F]) 4] 46 Ak 2R
for df_p, name in [(df_train_power, "iIZIhx"),
(df_val_power, "HiEDj#"), (df_test_power, "#liZjx")]:
if 'date' not in df_p.columns: raise
KeyError(f"'{name} ' ##H+#A%| 'date’ %! ")
df_p['date'] = pd.to_datetime(df_p['date’'])
df_p.set_index('date', inplace=True)
for col in ['local_time_hour_of_day', 'dateN',
'dayofweek']:
if col not in df_p.columns:

59

if col == 'local_time_hour_of_day':
df_p[col] = df_p.index.hour + df_p.index.minute / 60.0
elif col == ‘'dateN': df_p[coll]

df_p.index.dayofyear
elif col == ‘'dayofweek': df_p[coll
df_p.index.dayofweek

xls_weather = pd.ExcelFile(WEATHER_DATA_EXCEL_PATH)

df_weather_h_orig = pd.read_excel(xls_weather,
sheet_name=WEATHER_HOURLY_SHEET)
df_weather_d_orig = pd.read_excel(xls_weather,

sheet_name=WEATHER_DAILY_SHEET)

for df_w_orig, name_w in [(df_weather_h_orig, "/PMEfR
"), (df_weather_d_orig, "&HKA")]:
if 'time' not in df_w_orig.columns: raise
KeyError(f"'{name_w}' £z H A2 'time' %! ")
df_w_orig['time"'] =
pd.to_datetime(df_w_orig['time'])
df_w_orig.set_index('time', inplace=True)

df_weather_h =
clean_column_names_v3(df_weather_h_orig, prefix="h")

df_weather_d =
clean_column_names_v3(df_weather_d_orig, prefix="d")

hourly_features_final_names = [f"h_{str(col).split("
(*)[0].replace(' ', '_').replace('/', '_per_').replace('."',
'").replace('°’, 'deg')}" for col in
HOURLY_WEATHER_FEATURES_TO_USE]

daily_features_final_names = [f"d_{str(col).split("
(*)[0].replace(' ', '_').replace('/', '_per_').replace('."',
'").replace('°’, 'deg')}" for col in
DAILY_WEATHER_FEATURES_TO_USE]

print(" v5 fi: IEAEGIFRABIEZING. Wik, WL, .. ")
results_final = []
DAERAT =AEE AT H R & JF
for df_power_current, name_dataset in
[(df_train_power, "l Z £ "), (df_val_power, "I iF#E"),
(df_test_power, "JiXfE")]:
print(f" IE/EAPE: {name_dataset}")
df_merged = df_power_current.copy()
df_merged = df_merged.sort_index()

60

if not isinstance(df_merged. index,
pd.DatetimeIndex):
df_merged.index =
pd.to_datetime(df_merged.index)

df_weather_h_to_merge = df_weather_h.sort_index()
if not isinstance(df_weather_h_to_merge.index,
pd.DatetimeIndex):
df_weather_h_to_merge.index =
pd.to_datetime(df_weather_h_to_merge.index)

hourly_cols_present = [col for col in
hourly_features_final_names if col in
df_weather_h_to_merge.columns]
if hourly_cols_present:
df_merged = pd.merge_asof(df_merged,
df_weather_h_to_merge[hourly_cols_present],
left_index=True,
right_index=True, direction='backward',
tolerance=pd.Timedel
taChours=2))
else:
print(f" %4 ({name_dataset}): /N REHES]
N RAHHE PR REE] BAZEIF ")
for col_name in hourly_features_final_names:
if col_name not in df_merged.columns:
df_merged[col_name] = np.nan

df_weather_d_to_merge = df_weather_d.sort_index()
if not isinstance(df_weather_d_to_merge.index,
pd.DatetimeIndex):

df_weather_d_to_merge.index
pd.to_datetime(df_weather_d_to_merge.index)

df_weather_d_with_date
df_weather_d_to_merge.copy()
df_weather_d_with_date['date_only_merge_key']
df_weather_d_with_date.index.normalize()

df_merged_reset = df_merged.reset_index()
df_merged_reset['date_only_merge_key']
pd.to_datetime(df_merged_reset['date']).dt.normalize()

61

daily_cols_present = [col for col in
daily_features_final_names if col in
df_weather_d_with_date.columns]
if daily_cols_present:
df_merged_reset = pd.merge(df_merged_reset,
df_weather_d_with_dat
e[daily_cols_present + ['date_only_merge_key']],
on='date_only_merge_k
ey', how='left', suffixes=('', '_daily_drop'))
cols_to_drop_daily = [col for col in
df_merged_reset.columns if '_daily_drop' in coll
if cols_to_drop_daily:
df_merged_reset.drop(columns=cols_to_drop_daily,
inplace=True)
else:
print(f" %4 ({name_dataset}): & H KSHHIEF
fERH RABHE P ARILE HAZETF. ")
for col_name in daily_features_final_names:
if col_name not in
df_merged_reset.columns: df_merged_reset[col_name] = np.nan

if 'date_only_merge_key' in

df_merged_reset.columns:
df_merged_reset.drop(columns=["'date_only_mer

ge_key'], inplace=True)

df_merged =
df_merged_reset.set_index('date').sort_index()
df_merged['hour_sin'] = np.sin(2 * np.pi =*
df_merged['local_time_hour_of_day'] / 2u4.0)
df_merged['hour_cos'] = np.cos(2 * np.pi =*

df_merged['local_time_hour_of_day'] / 2u4.0)
df_merged['dayN_sin'] = np.sin(2 * np.pi =*
df_merged['dateN'] / 365.25)
df_merged['dayN_cos'] = np.cos(2 * np.pi =*
df_merged['dateN'] / 365.25)
df_merged['dayofweek_sin'] = np.sin(2 * np.pi =*
df_merged['dayofweek'] / 7.0)
df_merged['dayofweek_cos'] = np.cos(2 * np.pi =*
df_merged['dayofweek'] / 7.0)
results_final.append(df_merged)

df_train_final, df_val_final, df_test_final

62

results_final[@], results_final[l], results_finall[2] # ! f#
Lt =/ DataFrame
print("E gk, &IFMRHERINTER! ")

HE A TR CRAIZREE R itE)

base_lstm_features = ['power_normalized']

weather_time_lstm_features_list = [col for col in
hourly_features_final_names if col in df_train_final.columns]
+\

[col for col in
daily_features_final_names if col in df_train_final.columns]
+\

['hour_sin', 'hour_cos',
'dayN_sin', 'dayN_cos', 'dayofweek_sin', 'dayofweek_cos']

seen_lstm_features = set(base_lstm_features)

unique_weather_time_1lstm = []

for f_col in weather_time_lstm_features_list:

if f_col not in seen_lstm_features:

unique_weather_time_1lstm.append(f_col)
seen_lstm_features.add(f_col)

final_feature_columns_for_lstm = base_lstm_features

+ unique_weather_time_1lstm

IR A SRR X e B A R ARE S, RN
(flanH 0)
for df_check in [df_train_final, df_val_final,
df_test_finall:
for col_final in final_feature_columns_for_1lstm:
if col_final not in df_check.columns:
print(f" &% FEs) ' {col_final}' 7EFEA%L
APk, KBHEA N ")
df_check[col_final] = ©

print(f" & % H T LSTM & % M %F 1E ¥
({len(final_feature_columns_for_lstm)} A~):
{final_feature_columns_for_1lstm}")
return df_train_final, df_val_final, df_test_final,
final_feature_columns_for_lstm

(create_sequences_nwp_v2, get_initial_history_nwp_v2,
perform_iterative_forecast_for_period_lstm_nwp_v2,

inverse_transform_predictions_v2

def create_sequences_nwp_v2(df_with_features,

63

target_col_name, feature_cols_for_sequence, n_timesteps):
print(f" v5 fR: IE/EGIE LSTM %), [M%&: {n_timesteps},
FHE: {feature_cols_for_sequence}")

X,y =11, 1]
missing_cols_in_df = [col for col in
feature_cols_for_sequence if col not in

df_with_features.columns]
if missing_cols_in_df: raise KeyError(f"GJ&F5If, LA
TRHIEZIZE DataFrame F1# A2 {missing_cols_in_df}")
if target_col_name not in df_with_features.columns:
raise KeyError(f"H#5%| '{target_col_name}' f7Ff DataFrame H4k
AF[L ")
data_values =
df_with_features[feature_cols_for_sequence].values
target_values =
df_with_features[target_col_name].values
if len(data_values) <= n_timesteps:
print(F"##E K ({len(data_values)}s%), LK
fE A {n_timesteps}tF4! ")
return np.array(X), np.array(y)
for i in range(len(data_values) - n_timesteps):
X.append(data_values[i:(i + n_timesteps), :1)
y.append(target_values[i + n_timesteps])
return np.array(X), np.array(y)

def get_initial_history_nwp_v2(df_train_all_features,
test_period_start_time, n_timesteps_needed,
feature_cols_for_sequence):
if not isinstance(df_train_all_features.index,
pd.DatetimeIndex):
raise TypeError("get_initial_history_nwp_v2 7
df_train_all_features)& 5|/& DatetimeIndex! ")
history_end_time = test_period_start_time -
pd.Timedelta(minutes=15)
relevant_train_data =
df_train_all_features[df_train_all_features.index <=
history_end_time]
if len(relevant_train_data) < n_timesteps_needed:
raise ValueError(+" Il 2 % #x A~ & DL 32 it
{n_timesteps_needed} % ¥ Wm o om o C ™ & =
{len(relevant_train_data)} %7t {test_period_start_time} =
Ai)o ™)
missing_cols_in_hist_df = [col for «col in
feature_cols_for_sequence if col not in

64

relevant_train_data.columns]
if missing_cols_in_hist_df:
raise KeyError(f"3RELHI4G J7 se i, DLRREAE 21 £E
relevant_train_data H+#A#|: {missing_cols_in_hist_df}")
initial_history_df_slice =
relevant_train_data[feature_cols_for_sequence].iloc[-
n_timesteps_needed:]
return initial_history_df_slice.values

def perform_iterative_forecast_for_period_lstm_nwp_v2(
trained_lstm_
model, initial_history_features_array,
num_steps_to_
forecast, df_test_for_future_nwp_lookup,
period_start_
time_for_nwp, power_col_idx_in_features_list,
all_feature_n
ames_for_sequence_list):
predictions_normalized = []
current_sequence_features =
initial_history_features_array.copy()
current_time_for_prediction =
pd.Timestamp(period_start_time_for_nwp)
N_ACTUAL_FEATURES =
current_sequence_features.shape[1]

print(f" JF4575 LSTM+NWP #417 {num_steps_to_forecast}
HEAT, M {current_time_for_prediction} JF#h...")
for i in range(num_steps_to_forecast):
model_input =
current_sequence_features.reshape(1, N_TIMESTEPS,
N_ACTUAL_FEATURES)
predicted_norm_power_step =
trained_lstm_model.predict(model_input, verbose=0)[0, 0]
predictions_normalized.append(predicted_norm_pow
er_step)

if i < num_steps_to_forecast - 1:
next_sequence_start_features
current_sequence_features[1:, :].copy()
next_actual_timestamp_for_features
current_time_for_prediction + pd.Timedelta(minutes=15)
try:

future_features_for_step_series =

65

df_test_for_future_nwp_lookup.loc[next_actual_timestamp_for
_features, all_feature_names_for_sequence_list]
future_features_for_step =
future_features_for_step_series.values.copy()
future_features_for_step[power_col_idx_i
n_features_list] = predicted_norm_power_step
new_last_step_features =
future_features_for_step
except KeyError:
print(£" &5 | 78N B oA B TR g
{next_actual_timestamp_for_features} [KAMHEUGAE, Kl E—H1
FETRFHEHATIH AR ")
new_last_step_features =
current_sequence_features[-1, :].copy()
new_last_step_features[power_col_idx_in_
features_list] = predicted_norm_power_step
current_sequence_features
np.vstack((next_sequence_start_features,
new_last_step_features.reshape(l, N_ACTUAL_FEATURES)))
current_time_for_prediction
next_actual_timestamp_for_features
if (i + 1) % 96 == 0: print(f" LSTM+NWP L5/
{(i + 1) // 96} Rmymim...")
print (F"LSTM+NWP J& Tl sem ! ™)
return predictions_normalized

def
inverse_transform_predictions_v2(predictions_norm_list,
fitted_target_scaler):
if not predictions_norm_list: return []
predictions_2d =
np.array(predictions_norm_list).reshape(-1, 1)
if not hasattr(fitted_target_scaler, 'data_min_'):
raise ValueError("H T/ Scaler L&A ¥l G !
")
predictions_actual_scale_2d =
fitted_target_scaler.inverse_transform(predictions_2d)
return predictions_actual_scale_2d.flatten().tolist()

— TREFEH ——
def main_lstm_nwp_v5(): # WRASHEH
nnSEREAT LSTMHNWP HOEHE AL 2] BRI 2R (8 AL I IEER) |
T 5 CRAELRE" "
try:

66

PIfE 4R [A =/ DataFrame
df_train_final, df_val_final, df_test_final,
final_feature_columns_for_lstm = load_and_prepare_data_v5()

power_normalized_idx
final_feature_columns_for_1lstm.index('power_normalized')
N_FEATURES_ACTUAL
len(final_feature_columns_for_lstm)

print(f"\n v5 i: IEEQIE LSTM BJUIZRALAEFFF (i [H]
A N_TIMESTEPS={N_TIMESTEPS})...")
JIZRATH © HH7e NaN
X_train_lstm, y_train_lstm
create_sequences_nwp_v2(df_train_final.fillna(0),

t
arget_col_name='power_normalized',
.F
eature_cols_for_sequence=final_feature_columns_for_lstm,
n
_timesteps=N_TIMESTEPS)
NI GIE S
X_val_lstnm, y_val_lstm =
create_sequences_nwp_v2(df_val_final.fillna(0),
tar
get_col_name='power_normalized',
fea
ture_cols_for_sequence=final_feature_columns_for_lstm,
n_t
imesteps=N_TIMESTEPS)
if X_train_lstm.shape[0] == 0 or

X_val_lstm.shape[0] == 0 :
print("LSTM Il Zral i b £ v o Al e (o] gedidaAs
). BRIk ™)
return
print (F"LSTM MIZREWEAR: X: {X_train_lstm.shape},
y: {y_train_lstm.shape}")
print(F"LSTM BHEHHE MR : X: {X_val_lstm.shape},
y: {y_val_lstm.shape}")

print("\nv5 hit: FFEEREEMIIZE LSTM &R . .. ")
lstm_model = Sequential([
Input(shape=(N_TIMESTEPS,
N_FEATURES_ACTUAL)),

67

LSTMCLSTM_UNITS, activation='tanh',
return_sequences=True),
Dropout(0.2),
LSTMCLSTM_UNITS // 2, activation='tanh',
return_sequences=False),
Dropout(0.2),
Dense(l, activation='sigmoid')
D
lstm_model.compile(optimizer=tf.keras.optimizers
.Adam(learning_rate=0.001), loss='mean_squared_error')
print("LSTM BERIgE: ")
1stm_model.summary()

early_stopping =
EarlyStopping(monitor='val_loss', patience=10,
restore_best_weights=True, verbose=1)
reduce_lr = ReduceLROnPlateau(monitor='val_loss',
factor=0.2, patience=5, min_1r=0.00001, verbose=1)

start_time = time.time()
print(F"JFHGIIZREAL, 3k {EPOCHS} #...")
history = Tlstm_model.fit(X_train_1lstm,
y_train_lstm,
epochs=EPOCHS,
batch_size=BATCH_SIZE,
validation_data=(X_val_1
stm, y_val_lstm), # M7 5GUEEE
callbacks=[early_stoppin
g, reduce_lr],
verbose=1, shuffle=True)
end_time = time.time()
print(£"LSTM B YIZr5E ! A : {end_time -
start_time:.2f} . ")
lstm_model.save(LSTM_NWP_MODEL_PATH)
print(f"LSTM B8 77 E]: {LSTM_NWP_MODEL_PATH}")

df_train_power_for_scaler =
pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_TRAIN_SHEET_INPUT)
if 'power_cleaned' not in
df_train_power_for_scaler.columns:
raise KeyError("HF Scaler [¥E sl 2254
HAF| 'power_cleaned' %! ")

68

target_scaler = MinMaxScaler(feature_range=(0,
1))
target_scaler.fit(df_train_power_for_scaler[['po
wer_cleaned']].dropna())
joblib.dump(target_scaler,
TARGET_SCALER_LSTM_NWP_PATH)
print(f" H #5 ¥ %% #) MinMaxScaler O #£
'power_cleaned' B & i+ &k £ 7
{TARGET_SCALER_LSTM_NWP_PATH}")

df_test_predictions_lstm = df_test_final.copy()

df_test_predictions_lstm[final_feature_columns_f
or_lstm] =
df_test_predictions_lstm[final_feature_columns_for_lstm].fi
11na(o)

df_test_predictions_lstm['predicted_power_normal
ized_lstm_nwp'] = np.nan

df_test_predictions_lstm['predicted_power_actual
_lstm_nwp'] = np.nan

df_test_sorted
df_test_predictions_lstm.sort_index()
if not isinstance(df_test_sorted.index,
pd.DatetimeIndex):
print("%+5 . df_test_sorted HIZ 5| LTI AT A 2
DatetimeIndex, ZiXFR¥EH...")
if 'date' in df_test_sorted.columns:
df_test_sorted['date']
pd.to_datetime(df_test_sorted['date'])

df_test_sorted
df_test_sorted.set_index('date').sort_index()
else:
raise TypeError ("M ZR | 7R E AT A 2
H AR 2R, HERAR]'date' 5! ")

time_diffs
df_test_sorted.index.to_series().diff()
is_new_period_start_mask = time_diffs.isnull()
(time_diffs > pd.Timedelta(minutes=15))
period_starts_indices =
df_test_sorted.index[is_new_period_start_mask]

print(f"\n v5 hx : fF W K £ R G F
{len(period_starts_indices)} AT H. ")

69

if not period_starts_indices.empty:
print(period_starts_indices)

num_steps_per_period = 7 * 24 * 4

for start_dt_of_period in period_starts_indices:
print(f"\n-—— LSTM+NWP(v5) IE 7£ ~ M
{start_dt_of_period} F4afy 7 K WHATIN ——-")
try:
initial_history_features =
get_initial_history_nwp_v2(
df_train_final.fillna(0),
start_dt_of_period,
N_TIMESTEPS,
final_feature_columns_for_lstm
)
except ValueError as e:
print(f" {e} BILULE . ")
continue

df_test_current_period_lookup =
df_test_sorted[df_test_sorted.index >= start_dt_of_period]
if df_test_current_period_lookup.empty:
print (F"MiXEHHAS] {start_dt_of_period}
ZJEWEE . Bt E . ")

continue

normalized_preds_for_period
perform_iterative_forecast_for_period_lstm_nwp_v2(
lstm_model, initial_history_features,
num_steps_per_period,
df_test_current_period_lookup,
start_dt_of_period,
power_normalized_idx,
final_feature_columns_for_lstm

)

current_period_end_time = start_dt_of_period
+ pd.Timedelta(days=7) - pd.Timedelta(minutes=15)
target_timestamps_in_test_period =
df_test_sorted.loc[start_dt_of_period :
current_period_end_time].index

actual_pred_len

70

len(normalized_preds_for_period)

target_ts_1len
len(target_timestamps_in_test_period)

if actual_pred_len == 0 and target_ts_len >
0 :
print(f" JA# {start_dt_of_period} KEH4E
CHE, (HEEA {target_ts_len} 4~ ")
continue
if actual_pred_len == 0 and target_ts_len ==
0:
print(f" J# {start_dt_of_period} HA#IsHS
B, Bz, ")

continue

if actual_pred_len > target_ts_len:
normalized_preds_for_period
normalized_preds_for_period[:target_ts_1len]
elif actual_pred_len < target_ts_len:
target_timestamps_in_test_period
target_timestamps_in_test_period[:actual_pred_len]

if not target_timestamps_in_test_period.empty
and actual_pred_len > 0 :
df_test_predictions_lstm.loc[target_time
stamps_in_test_period,
'"predicted_power_normalized_lstm_nwp"'] =
normalized_preds_for_period
actual_scale_preds_for_period
inverse_transform_predictions_v2(
normalized_preds_for_period,

target_scaler
)
df_test_predictions_lstm.loc[target_time
stamps_in_test_period, 'predicted_power_actual_lstm_nwp'] =
actual_scale_preds_for_period
print(f" LSTM+NWP J& I
{start_dt_of_period} KN IEFE. ")
else:
print(f" JH# {start_dt_of_period} il
45 R 9 SR AR TR AN 2500 R H BRI (BRI 78 T . ")

print(f"\n I 7€ % 0 &5 3 Ok 47 3 Excel LA :
'{OUTPUT_EXCEL_PATH}'...")

71

with pd.ExcelWriter(OUTPUT_EXCEL_PATH) as writer:
df_train_final.reset_index().to_excel(writer,
sheet_name=0UTPUT_TRAIN_SHEET_NAME, index=False)

df_val_final.reset_index().to_excel(writer,
sheet_name='validation_data_with_features', index=False)
df_test_predictions_lstm.reset_index().to_ex
cel(writer, sheet_name=OUTPUT_TEST_SHEET_NAME, index=False)
print(f"LSTM+NWP i Il 45 R & e Dy Ik 7 ! &
'{OUTPUT_EXCEL_PATH}' ' ")

except FileNotFoundError as e:
print (F"LSTM+NWP(v5) iit #2 : £ A F| Excel 3 ff
'{e.filename}'. ")
except KeyError as e:
print (f"LSTM+NWP(v5)iiife: DataFrame Ha5t/ b5 '{e}'.
")
traceback.print_exc()
except Exception as e:
print (F"LSTM+NWP(v5) Jifs: KAEEEIZ AN IH 1R {e}™)
traceback.print_exc()

if __name__ == "__main__":
main_Llstm_nwp_v5()

5] & 3 Transformer K% O AR

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model # f{fiJH %= API
f%# Transformer

from tensorflow.keras.layers import Input, Dense,
Dropout, LayerNormalization, MultiHeadAttention,
GlobalAveragePoolinglD, Embedding, Add

from tensorflow.keras.callbacks import EarlyStopping,
ReduceLROnPlateau

from sklearn.preprocessing import MinMaxScaler

import joblib

import os

import time

import traceback

72

——— AN EENSRRE ——-
DRIVE_BASE_PATH =
'/content/drive/MyDrive/elect_cup_2025/"'

POWER_DATA_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
"problem3_all.xlsx')

POWER_TRAIN_SHEET_INPUT = 'train'

POWER_VAL_SHEET_INPUT = 'val'

POWER_TEST_SHEET_INPUT = 'test'

WEATHER_DATA_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
'normalized_weather_data.xlsx')

WEATHER_HOURLY_SHEET = 'lh_normalized'

WEATHER_DAILY_SHEET = 'ld_normalized’

OUTPUT_EXCEL_PATH = os.path.join(DRIVE_BASE_PATH,
'problem3_Transformer_NWP_forecast_results_vl.xlsx')

TRANSFORMER_MODEL_PATH = os.path.join(DRIVE_BASE_PATH,
'transformer_nwp_model_vl.Kkeras')

TARGET_SCALER_TRANSFORMER_NWP_PATH =
os.path.join(DRIVE_BASE_PATH,
'target_min_max_scaler_for_transformer_nwp_vl.joblib')

——— Transformer Mill&ZSH K E ——-

N_TIMESTEPS = 96 # Transformer [F[F K E2K (Encoder
R IRSED)

N_FEATURES 4 7EEUIHE & 5 3l & 1 E

EPOCHS = 50 # % (Transformer 7] 8T B L4t
IR FE AT K VA

BATCH_SIZE = 64
VALIDATION_SPLIT_RATIO = None # K AIRMNTILAESE AT H val
sheet

Transformer spécifiques parameters

D_MODEL = 64 # Transformer HJNH4EE (Embedding
dimension)

NUM_HEADS = 4 e 2 SEN= WAL N P

FF_DIM = 128 # FeedForward 4% ;N # 4k &

NUM_TRANSFORMER_BLOCKS = 2 # Transformer Encoder Z#{
DROPOUT_RATE = 0.15 H# Dropoutthﬁﬂ

——— FNRAHIE P IERARAES] (5 LSTM FRARFF—80) ——-
HOURLY_WEATHER_FEATURES_TO_USE = [

73

'global_tilted_irradiance_instant',
'direct_normal_irradiance_instant',

'temperature_2m', 'cloud_cover',6 'wind_speed_10m',
]
DAILY_WEATHER_FEATURES_TO_USE = [
'sunshine_duration', 'precipitation_hours',
'wind_speed_10m_mean', 'cloud_cover_mean'
]

——— Helper Functions (K& AL I LSTM v5 AR A Bk
AfEEs) ——-

def clean_column_names_tf(df, prefix=""): # {fHHLE RS
[S)iSRNTSEUIEN
df_cleaned = df.copy()
new_cols_map = {}
for col in df_cleaned.columns:
name_part = str(col).split(' (')[0]

cleaned_name = name_part.replace(’ ',

'_').replace('/', ‘'_per_').replace('.', '').replace('®',
'deg')

if prefix: new_cols_map[str(col)] =

f"{prefix}_{cleaned_name}"
else: new_cols_map[str(col)] = cleaned_name
df_cleaned.rename(columns=new_cols_map, inplace=True)
return df_cleaned

def load_and_prepare_data_tf(): # {/H#4
print(" Transformer Jifd: FHFIAINEAMERESE. .. ")
(WEBEHE 52 A load_and_prepare_data_v5 A —3,
TR [5] =4 DataFrame F4HMEF3)
... (EREVEIRAS, RS EEMINE. &8, BIENERHE, JF
zF df_train, df_val, df_test, feature_list)
IR B4 N load_and_prepare_data_tf JH7E 3% il
MM Z AW load_and_prepare_data_v5 JEHdr 4 N
load_and_prepare_data_tf
7 = : HOURLY_WEATHER_FEATURES_TO_USE il
DAILY_WEATHER_FEATURES_TO_USE 5& X {£ 4=
clean_column_names_v3 17 % &y 44 wirf {4 1

print(" Transformer Jiife: FFUGMEAMESEHE. . .")
if not OS.path.eXiStS(POWER_DATA_EXCEL_PATH)Z
raise FileNotFoundError(f" # A 3| oh & ¥ 3 < 4
' {POWER_DATA_EXCEL_PATH}'! ™)

74

if not os.path.exists(WEATHER_DATA_EXCEL_PATH):
raise FileNotFoundError(f" ik A 3| K < % 3 4
' {WEATHER_DATA_EXCEL_PATH}'! ™)

df_train_power = pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_TRAIN_SHEET_INPUT)

df_val_power = pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_VAL_SHEET_INPUT)

df_test_power = pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_TEST_SHEET_INPUT)

for df_p, name in [(df_train_power, "illZIfx"),
(df_val_power, "IHiEIh=%"), (df_test_power, "Ji{TiZ")]:
if 'date' not in df_p.columns: raise
KeyError(f"'{name}' £z A2 'date’ %! ")
df_p['date'] = pd.to_datetime(df_p['date’'])
df_p.set_index('date', inplace=True)
for col in ['local_time_hour_of_day', 'dateN',
'dayofweek']:
if col not in df_p.columns:

if col == 'local_time_hour_of_day':
df_p[col] = df_p.index.hour + df_p.index.minute / 60.0
elif col == 'dateN': df_p[col] =

df_p.index.dayofyear
elif col == 'dayofweek': df_p[col] =
df_p.index.dayofweek

xls_weather = pd.ExcelFile(WEATHER_DATA_EXCEL_PATH)

df_weather_h_orig = pd.read_excel(xls_weather,
sheet_name=WEATHER_HOURLY_SHEET)
df_weather_d_orig = pd.read_excel(xls_weather,

sheet_name=WEATHER_DAILY_SHEET)

for df_w_orig, name_w in [(df_weather_h_orig, "/PMifR
"), (df_weather_d_orig, "&HKA")]:
if 'time' not in df_w_orig.columns: raise
KeyError(f"'{name_w}' £+ AZ] 'time" ! ")
df_w_orig['time"'] =
pd.to_datetime(df_w_orig['time'])
df_w_orig.set_index('time', inplace=True)

df_weather_h =
clean_column_names_tf(df_weather_h_orig, prefix="h") # fiiH

HreR KA

75

df_weather_d =
clean_column_names_tf(df_weather_d_orig, prefix="d") # {#H]

ek

hourly_features_final_names = [f"h_{str(col).split("
(")[0].replace(' ', '_').replace('/', '_per_').replace('.’',
'").replace('®’, 'deg')}" for col in

HOURLY_WEATHER_FEATURES_TO_USE]

daily_features_final_names = [f"d_{str(col).split("
(')[0].replace(' ', '_').replace('/', '_per_').replace('."',
'').replace('®’, 'deg')}" for col in
DAILY_WEATHER_FEATURES_TO_USE]

results_final = []
for df_power_current, name_dataset in
[(df_train_power, " JlZ % "), (df_val_power, "5 ikE#& "),
(df_test_power, "JiX&E")]:
df_merged = df_power_current.copy()
df_merged = df_merged.sort_index()
if not isinstance(df_merged.index,
pd.DatetimeIndex): df_merged. index =
pd.to_datetime(df_merged.index)

df_weather_h_to_merge = df_weather_h.sort_index()
if not isinstance(df_weather_h_to_merge.index,

pd.DatetimeIndex): df_weather_h_to_merge.index =

pd.to_datetime(df_weather_h_to_merge.index)
hourly_cols_present = [col for col in

hourly_features_final_names if col in

df_weather_h_to_merge.columns]
if hourly_cols_present:
df_merged = pd.merge_asof(df_merged,
df_weather_h_to_merge[hourly_cols_present],
left_index=True,
right_index=True, direction="'backward',
tolerance=pd.Timedelta(Chours=2))
else:
for col_name in hourly_features_final_names:
if col_name not in df_merged.columns:
df_merged[col_name] = np.nan

df_weather_d_to_merge = df_weather_d.sort_index()
if not isinstance(df_weather_d_to_merge.index,
pd.DatetimeIndex): df_weather_d_to_merge.index =

76

pd.to_datetime(df_weather_d_to_merge.index)
df_weather_d_with_date
df_weather_d_to_merge.copy()
df_weather_d_with_date['date_only_merge_key']
df_weather_d_with_date.index.normalize()
df_merged_reset = df_merged.reset_index()
df_merged_reset['date_only_merge_key']
pd.to_datetime(df_merged_reset['date']).dt.normalize()
daily_cols_present = [col for col in
daily_features_final_names if col in
df_weather_d_with_date.columns]
if daily_cols_present:
df_merged_reset = pd.merge(df_merged_reset,
df_weather_d_with_date[daily_cols_present +
['date_only_merge_key']],

on='date_only_merge_k
ey', how='left', suffixes=('', '_daily_drop'))
cols_to_drop_daily = [col for col in
df_merged_reset.columns if '_daily_drop' in coll
if cols_to_drop_daily:
df_merged_reset.drop(columns=cols_to_drop_daily,
inplace=True)
else:
for col_name in daily_features_final_names:
if col_name not in
df_merged_reset.columns: df_merged_reset[col_name] = np.nan
if 'date_only_merge_key' in
df_merged_reset.columns:
df_merged_reset.drop(columns=["'date_only_merge_key'],
inplace=True)
df_merged =
df_merged_reset.set_index('date').sort_index()
df_merged['hour_sin = np.sin(2 * np.pi =*
df_merged['local_time_hour_of_day'] / 2u4.0)
df_merged['hour_cos'] = np.cos(2 * np.pi =*
df_merged['local_time_hour_of_day'] / 2u4.0)
df_merged['dayN_sin'] np.sin(2 * np.pi =*
df_merged['dateN'] / 365.25)
df_merged['dayN_cos'] = np.cos(2 * np.pi =*
df_merged['dateN'] / 365.25)
df_merged['dayofweek_sin']
df_merged['dayofweek'] / 7.0)
df_merged['dayofweek_cos']

']
']

np.sin(2 * np.pi *

np.cos(2 * np.pi *

77

df_merged['dayofweek'] / 7.0)
results_final.append(df_merged)

df_train_final, df_val_final, df_test_final =
results_final[@], results_final[l], results_finall[2]

base_tf_features = ['power_normalized']
weather_time_tf_features_list = [col for col in
hourly_features_final_names if col in df_train_final.columns]
+\

[col for col in
daily_features_final_names if col in df_train_final.columns]
+\

['hour_sin',
"hour_cos', 'dayN_sin', 'dayN_cos', 'dayofweek_sin',
'dayofweek_cos']
seen_tf_features = set(base_tf_features)
unique_weather_time_tf = []
for f_col in weather_time_tf_features_list:
if f_col not in seen_tf_features:
unique_weather_time_tf.append(f_col);
seen_tf_features.add(f_col)
final_feature_columns_for_tf = base_tf_features +
unique_weather_time_tf

for df_check in [df_train_final, df_val_final,
df_test_finall:
for col_final in final_feature_columns_for_tf:
if col_final not in df_check.columns:
df_check[col_final] = @
print(f"Transformer i % : & & H T /5 % 9 %F 1L 41
({len(final_feature_columns_for_tf)} A~):
{final_feature_columns_for_tf}")
return df_train_final, df_val_final, df_test_final,
final_feature_columns_for_tf

def create_sequences_tf(df_with_features,
target_col_name, feature_cols_for_sequence, n_timesteps): #
i ¥ 4

(5200 create_sequences_nwp_v2 ##H—%)
print(f"Transformer i £ : IE £ G & 5 %, [& :
{n_timesteps}, ##f: {feature_cols_for_sequence}")
X,y =11, I

missing_cols_in_df

[col for col in

78

feature_cols_for_sequence if col not in
df_with_features.columns]
if missing_cols_in_df: raise KeyError(f"GJ&F5if, LA
TRHIEZIZE DataFrame F1# A2 {missing_cols_in_df}")
if target_col_name not in df_with_features.columns:
raise KeyError(f"H#5%| '{target_col_name}' f7Ff DataFrame H4X
AF[L ")
data_values =
df_with_features[feature_cols_for_sequence].values
target_values =
df_with_features[target_col_name].values
if len(data_values) <= n_timesteps:
print(F"##lE Kk ({len(data_values)}s%), LiEblEK
fE A {n_timesteps}tF4! ")
return np.array(X), np.array(y)
for i in range(len(data_values) - n_timesteps):
X.append(data_values[i:(i + n_timesteps), :1)
y.append(target_values[i + n_timesteps])
return np.array(X), np.array(y)

def get_initial_history_tf(df_train_all_features,
test_period_start_time, n_timesteps_needed,
feature_cols_for_sequence): # {ffH#H%
(5201 get_initial_history_nwp_v2 &% %)
if not isinstance(df_train_all_features.index,
pd.DatetimeIndex):
raise TypeError("get_initial_history_tf &
df_train_all_features)& 5|/& DatetimeIndex! ")
history_end_time = test_period_start_time -
pd.Timedelta(minutes=15)
relevant_train_data =
df_train_all_features[df_train_all_features.index <=
history_end_time]
if len(relevant_train_data) < n_timesteps_needed:
raise ValueError(f" il Zr % 4 A~ & LL #2 1t
{n_timesteps_needed} % ¥ o Wm o om o ¢ ™ & =
{len(relevant_train_data)} %7 {test_period_start_time} =
Ai)o ™)
missing_cols_in_hist_df = [col for «col in
feature_cols_for_sequence if col not in
relevant_train_data.columns]
if missing_cols_in_hist_df:
raise KeyError(f" K446 [i, LLF %1k 51 ££
relevant_train_data ## 4 %]: {missing_cols_in_hist_df}")

79

initial_history_df_slice =
relevant_train_data[feature_cols_for_sequence].iloc[-
n_timesteps_needed:]
return initial_history_df_slice.values

def perform_iterative_forecast_for_period_tf(# fiH¥#
trained_tf_mo
del, initial_history_features_array,
num_steps_to_
forecast, df_test_for_future_nwp_lookup,
period_start_
time_for_nwp, power_col_idx_in_features_list,
all_feature_n
ames_for_sequence_list):
(5 Z il il
perform_iterative_forecast_for_period_lstm_nwp_v2 Z#H—#)
predictions_normalized = []
current_sequence_features =
initial_history_features_array.copy()
current_time_for_prediction =
pd.Timestamp(period_start_time_for_nwp)
N_ACTUAL_FEATURES_TF =
current_sequence_features.shape[1]

print(f"Transformer i # : JF # K~ # 17
{num_steps_to_forecast} 72 Z2 - SR A VIR (S M
{current_time_for_prediction} Jf#5...")

for i in range(num_steps_to_forecast):
model_input =
current_sequence_features.reshape(1, N_TIMESTEPS,
N_ACTUAL_FEATURES_TF)
predicted_norm_power_step =
trained_tf_model.predict(model_input, verbose=0)[0, 0]
predictions_normalized.append(predicted_norm_pow
er_step)

if i < num_steps_to_forecast - 1:
next_sequence_start_features
current_sequence_features[1:, :].copy()
next_actual_timestamp_for_features
current_time_for_prediction + pd.Timedelta(minutes=15)
try:

future_features_for_step_series =
df_test_for_future_nwp_lookup.loc[next_actual_timestamp_for

80

_features, all_feature_names_for_sequence_list]
future_features_for_step =
future_features_for_step_series.values.copy()
future_features_for_step[power_col_idx_i
n_features_list] = predicted_norm_power_step
new_last_step_features =
future_features_for_step
except KeyError:
new_last_step_features =
current_sequence_features[-1, :].copy()
new_last_step_features[power_col_idx_in_
features_list] = predicted_norm_power_step
current_sequence_features
np.vstack((next_sequence_start_features,
new_last_step_features.reshape(l, N_ACTUAL_FEATURES_TF)))
current_time_for_prediction
next_actual_timestamp_for_features
if (i + 1) % 96 == 0: print(f" Transformer 5
s {1+ 1) // 96} Ry, ..")
print(f"Transformer f& MM e ! ")
return predictions_normalized

def
inverse_transform_predictions_tf(predictions_norm_list,
fitted_target_scaler): # fiiH#H#
(520K inverse_transform_predictions_v2 ZH#H—%)
if not predictions_norm_list: return []
predictions_2d =
np.array(predictions_norm_list).reshape(-1, 1)
if not hasattr(fitted_target_scaler, 'data_min_'):
raise ValueError("H T/ Scaler L&A ¥l G !
")
predictions_actual_scale_2d =
fitted_target_scaler.inverse_transform(predictions_2d)
return predictions_actual_scale_2d.flatten().tolist()

——— Transformer FRAINJE KL ——
def positional_encoding(length, depth):
depth = depth / 2
positions = np.arange(length)[:, np.newaxis] #
(seq, 1)
depths = np.arange(depth)[np.newaxis, :] / depth #
(1, depth)
angle_rates = 1 / (10000**depths) # (1,

81

depth)

angle_rads = positions * angle_rates #
(pos, depth)
pos_encoding = np.concatenate([np.sin(angle_rads),

np.cos(angle_rads)], axis=-1)
return tf.cast(pos_encoding, dtype=tf.float32)

class PositionalEmbedding(tf.keras.layers.Layer):
def __init__(self, vocab_size_if_any, d_model,
sequence_length): # vocab_size_if_any not used for numerical
super().__init__Q)
self.d_model = d_model
For numerical features, we often use a Dense
layer as a linear projection
self.embedding = Dense(d_model, activation=None)
No vocab_size needed
self.pos_encoding =
positional_encoding(length=sequence_length, depth=d_model)

def call(self, x):
length = tf.shape(x)[1] # sequence Tlength
(N_TIMESTEPS)
x = self.embedding(x) # (batch, seq_len, d_model)
This factor sets the relative importance of
"word" versus "position" embeddings.
x *= tf.math.sqrt(tf.cast(self.d_model,
tf.float32))
X = x + self.pos_encoding[tf.newaxis, :length, :]
Add positional encoding
return Xx

def transformer_encoder_block(d_model, num_heads, ff_dim,
dropout_rate=0.1):
inputs = Input(shape=(None, d_model)) # (batch_size,
sequence_length, d_model)

Multi-Head Self-Attention

attention = MultiHeadAttention(num_heads=num_heads,
key_dim=d_model // num_heads, dropout=dropout_rate)(inputs,
inputs, inputs) # Query, Value, Key are the same

attention = Dropout(dropout_rate)(attention)

attention = LayerNormalization(epsilon=1le-6)(inputs
+ attention) # Add & Norm (Residual connection)

82

Feed Forward Network

outputs = Dense(ff_dim, activation="relu")(attention)

outputs = Dense(d_model) Coutputs)

outputs = Dropout(dropout_rate) (outputs)

outputs = LayerNormalization(epsilon=1e-6)(attention
+ outputs) # Add & Norm

return Model(inputs=inputs, outputs=outputs)

def build_transformer_model(input_shape_timesteps,
input_shape_features,
d_model, num_heads, ff_dim,
num_transformer_blocks, dropout_rate):
mun i —ANEET Encoder) Transformer #5571 T B0 Fi
inputs = Input(shape=(input_shape_timesteps,
input_shape_features)) # (N_TIMESTEPS, N_FEATURES_ACTUAL)

1. Embedding + Positional Encoding

For numerical multivariate time series, use a Dense
layer to project features to d_model

then add positional encoding.

x = Dense(d_model, activation=None)(inputs) # Project
N_FEATURES_ACTUAL to d_model

Create and add positional encoding

We need a custom layer or function to add positional
encoding if not using Embedding layer directly

For simplicity, we can add it directly if we compute
it matching batch and seq_len

A simpler PositionalEmbedding layer is used above.

This assumes numerical inputs are already

appropriately scaled.

We'll use a simplified approach: Dense projection
then add positional encoding created separately.

Adding positional encoding (simpler way for direct
numerical input)

seq_len = input_shape_timesteps

pos_encoding_tf = positional_encoding(length=seq_len,
depth=d_model)

X = X + pos_encoding_tf # Broadcasting might work if
pos_encoding matches shape or is (seq_len, d_model)

x = Dropout(dropout_rate)(x)

83

2. Transformer Encoder Blocks
for _ in range(num_transformer_blocks):
We can't directly reuse the Model instance from
transformer_encoder_block in Sequential easily.
Instead, build it functionally.
Multi-Head Self-Attention
attn_output =
MultiHeadAttention(num_heads=num_heads, key_dim=d_model //
num_heads, dropout=dropout_rate)(x, x, x)

attn_output =
Dropout(dropout_rate)(attn_output) # MHA already has dropout
x = LayerNormalization(epsilon=1le-6)(x +

attn_output) # Add & Norm

Feed Forward Network
ffn_output = Dense(ff_dim, activation="relu")(x)
ffn_output = Dense(d_model) (ffn_output)
ffn_output = Dropout(dropout_rate)(ffn_output)
x = LayerNormalization(epsilon=1le-6)(x +
ffn_output) # Add & Norm

3. Output Layer
GlobalAveragePoolinglD reduces the sequence
dimension
X -
GlobalAveragePoolinglD(data_format="channels_last")(x) #
(batch_size, d_model)
x = Dropout(dropout_rate)(x)
outputs = Dense(l, activation="sigmoid")(x) # Predict
next single step, scaled to [0,1]

model = Model(inputs=inputs, outputs=outputs)
return model

- =
def main_transformer_nwp(): # WRASHEH
nunsE AT Transformer+NWP % AL . BERLISR. T 5 07
try:
df_train_final, df_val_final, df_test_final,
final_feature_columns_for_tf = load_and_prepare_data_tf()

power_normalized_idx =

84

final_feature_columns_for_tf.index('power_normalized')
N_FEATURES_ACTUAL

len(final_feature_columns_for_tf)

print(f"\n Transformer Jif#: E/EANEIIZALRIET S
(I N_TIMESTEPS={N_TIMESTEPS})...")
X_train_tf, y_train_tf =
create_sequences_tf(df_train_final.fillna(o),

t
arget_col_name='power_normalized',
.F
eature_cols_for_sequence=final_feature_columns_for_tf,
n
_timesteps=N_TIMESTEPS)
X_val_tf, y_val_tf =
create_sequences_tf(df_val_final.fillna(@),
tar
get_col_name='power_normalized',
fea
ture_cols_for_sequence=final_feature_columns_for_tf,
n_t

imesteps=N_TIMESTEPS)
if X_train_tf.shape[0] == 0 or X_val_tf.shape[0]
print("Transformer JIIZRE58 U HHR 75 A& K. %

return
print(f"Transformer il 4 ¥ #& /& Ik : X:
{X_train_tf.shape}, y: {y_train_tf.shape}")
print(f"Transformer I if % ¥% /& IR : X:
{X_val_tf.shape}, y: {y_val_tf.shape}")

print("\n Transformer i f%: JF 44 # & I Zx

Transformer A, . . ")
transformer_model = build_transformer_model(

input_shape_timesteps=N_TIMESTEPS,

input_shape_features=N_FEATURES_ACTUAL,

d_model=D_MODEL,

num_heads=NUM_HEADS,

ff_dim=FF_DIM,

num_transformer_blocks=NUM_TRANSFORMER_BLOCK

dropout_rate=DROPOUT_RATE

85

)
transformer_model.compile(optimizer=tf.keras.opt
imizers.Adam(learning_rate=0.001, clipnorm=1.0), # Added
clipnorm
loss='mean_squared_error

metrics=[tf.Kkeras.metric
s.RootMeanSquaredError(name="'rmse')])
print("Transformer ALy ")
transformer_model.summary()

early_stopping =
EarlyStopping(monitor="val_rmse', patience=10,
restore_best_weights=True, verbose=1) # Monitor val_rmse
reduce_lr = ReduceLROnPlateau(monitor='val_rmse',
factor=0.2, patience=5, min_1r=0.00001, verbose=1) # Monitor
val_rmse

start_time = time.time()
print (F" 1461114k Transformer #74, 3t {EPOCHS} #¢...")

history = transformer_model.fit(X_train_tf,
y_train_tf,
epochs=EPOCHS,
batch_size=BATCH_SIZE,
validation_data=(X_val_t
f, y_val_tf),

callbacks=[early_stoppin
g, reduce_lr],
verbose=1, shuffle=True)
end_time = time.time()
print(f"Transformer #HAYIZk 5! N : {end_time -
start_time:.2f} #. ")
transformer_model.save(TRANSFORMER_MODEL_PATH)
print(f"Transformer # A & & 7 3|
{TRANSFORMER_MODEL _PATH}")

df_train_power_for_scaler =
pd.read_excel(POWER_DATA_EXCEL_PATH,
sheet_name=POWER_TRAIN_SHEET_INPUT)
if 'power_cleaned' not in
df_train_power_for_scaler.columns:
raise KeyError("HF Scaler [¥E sl 2254
HAF| 'power_cleaned' %! ")

86

target_scaler = MinMaxScaler(feature_range=(0,
1))
target_scaler.fit(df_train_power_for_scaler[['po
wer_cleaned']].dropna())
joblib.dump(target_scaler,
TARGET_SCALER_TRANSFORMER_NWP_PATH)
print(f" H #5 ¥ %% #) MinMaxScaler O #£
'power_cleaned' B & i+ &k £ 7
{TARGET_SCALER_TRANSFORMER_NWP_PATH}")

df_test_predictions_tf = df_test_final.copy()

df_test_predictions_tf[final_feature_columns_for
_tf] =
df_test_predictions_tf[final_feature_columns_for_tf].fillna
(0)

df_test_predictions_tf['predicted_power_normaliz
ed_tf_nwp'] = np.nan

df_test_predictions_tf['predicted_power_actual_t
f_nwp'] = np.nan

df_test_sorted
df_test_predictions_tf.sort_index()
if not isinstance(df_test_sorted.index,
pd.DatetimeIndex):
if 'date' in df_test_sorted.columns:
df_test_sorted['date']
pd.to_datetime(df_test_sorted['date'])

df_test_sorted
df_test_sorted.set_index('date').sort_index()
else: raise TypeError("MNRAER 5767 B HARIA
A HBAR R, HEAZ'date' 5! ")

time_diffs =
df_test_sorted.index.to_series().diff()
is_new_period_start_mask = time_diffs.isnull()
(time_diffs > pd.Timedelta(minutes=15))
period_starts_indices =
df_test_sorted.index[is_new_period_start_mask]

print(f"\n Transformer ¥ifE: 7& M4 d ik 5 2
{len(period_starts_indices)} AT H. ")
if not period_starts_indices.empty:
print(period_starts_indices)

87

num_steps_per_period = 7 * 24 * 4

for start_dt_of_period in period_starts_indices:
print(f"\n--- Transformer+NWP iF 7£ N M
{start_dt_of_period} JT4GH 7 KJE AT T ———")
try:
initial_history_features =
get_initial_history_tf(
df_train_final.fillna(0),
start_dt_of_period,
N_TIMESTEPS,
final_feature_columns_for_tf
)
except ValueError as e: print(f" {e} Btidit/d
#H. "); continue

df_test_current_period_lookup =
df_test_sorted[df_test_sorted.index >= start_dt_of_period]
if df_test_current_period_lookup.empty:
print (F"MiXEHHAS] {start_dt_of_period}
Za . Bk E . ") continue

normalized_preds_for_period
perform_iterative_forecast_for_period_t+(
transformer_model,
initial_history_features, num_steps_per_period,
df_test_current_period_lookup,
start_dt_of_period,
power_normalized_idx,
final_feature_columns_for_tf

)

current_period_end_time = start_dt_of_period
+ pd.Timedelta(days=7) - pd.Timedelta(minutes=15)
target_timestamps_in_test_period
df_test_sorted.loc[start_dt_of_period
current_period_end_time].index

actual_pred_len
len(normalized_preds_for_period)

target_ts_len
len(target_timestamps_in_test_period)

\"

if actual_pred_len == 0 and target_ts_len

88

0 :
print(f"F] {start_dt_of_period} #HHEMK
T, E#EA {target_ts_len} /~. "); continue
if actual_pred_len == 0 and target_ts_len ==
0:
print(f" i} {start_dt_of_period} HAFri B
NEs, BEdIEFE. ") continue
if actual_pred_len > target_ts_len:
normalized_preds_for_period
normalized_preds_for_period[:target_ts_1len]
elif actual_pred_len < target_ts_len:
target_timestamps_in_test_period
target_timestamps_in_test_period[:actual_pred_len]

if not target_timestamps_in_test_period.empty
and actual_pred_len > 0 :
df_test_predictions_tf.loc[target_timest
amps_in_test_period, 'predicted_power_normalized_tf_nwp'] =
normalized_preds_for_period
actual_scale_preds_for_period =
inverse_transform_predictions_tf(
normalized_preds_for_period,
target_scaler
)
df_test_predictions_tf.loc[target_timest
amps_in_test_period, 'predicted_power_actual_tf_nwp'] =
actual_scale_preds_for_period
print(f" Transformer+NwP Ji
{start_dt_of_period} KN IEE. ")
else:
print(f" JH# {start_dt_of_period} il
45 R 9 SR AR Fh AN 210560 B H RIS gk)

print(f"\n Transformer Jif: IEEWTRISE R ARAF 2]
Excel 3Cff: '{OUTPUT_EXCEL_PATH}'...")
with pd.ExcelWriter(OUTPUT_EXCEL_PATH) as writer:
df_train_final.reset_index().to_excel(writer,
sheet_name=POWER_TRAIN_SHEET_INPUT, index=False) # ffH %I\
YAES%
df_val_final.reset_index().to_excel(writer,
sheet_name=POWER_VAL_SHEET_INPUT, index=False) # {R{FALFJ5H
LAt S
df_test_predictions_tf.reset_index().to_exce
1L(writer, sheet_name=POWER_TEST_SHEET_INPUT, index=False)

89

print(f"Transformer+NwP Tl &5 R ORI RF! &
' {OUTPUT_EXCEL_PATH}' 1! ")

except FileNotFoundError as e:
print(f"Transformer i f2£: kA 2| Excel XX ff
'{e.filename}'. ")
except KeyError as e:
print(f"Transformer jiifE: DataFrame H#k/b71 '{e}'.
")
traceback.print_exc()
except Exception as e:
print(f"Transformer Jifs: KAEEK 2/ R: {e}")
traceback.print_exc()

if __name__ == "__main__":
main_transformer_nwp()

5] 4 IDW HI#% AR

import pandas as pd

import numpy as np

import os

from math import radians, sin, cos, sqrt, atan2

——— WHBAEMERRE ———

BASE_WEATHER_DATA_FOLDER = 'problemid_weather_data/' # 77
JB 9 AN RS Sk

FILE_PREFIX = '_weather_data.xlsx' # U4 T H T4

OUTPUT_IDW_EXCEL_PATH =
os.path.join(BASE_WEATHER_DATA_FOLDER,
'fused_weather_by_idw.xlsx"')

JREE AR (SR, &) - Bds 1 2R BEARA OutRrs)
(BN T ik SRR B A B R, AT IR A 2 A U R s 1A
FRE) IDW fE
SOURCE_COORDS = {
1: (37.42, 122.17), # JefRdus CHARA)
(36.42, 121.17),
(36.42, 122.17),
(36.42, 123.17),
(37.42, 121.17),
(37.42, 123.17),
(38.42, 121.17),

SO FwN

90

8: (38.42, 122.17),
9: (38.42, 123.17),

}

TARGET_POINT_ID = 1 # RAZEREE A 1 OufRin) KA MR
-
=

REFERENCE_POINT_IDS = list(range(2, 10)) # F%udEri 239
VERNZ % R

IDW_POWER_K = 2 # IDW A s K

SHEET_NAMES = ['1h', '1d'] # ZEAHTAEERAL
COLUMN_TO_IGNORE = 'weather_code (wmo code)' # X|¥|AZ
5 IDW, EZEHH RS

def haversine_distance(latl, lonl, lat2, lon2):
nn RN R AT S 2 BRI R (A B
R = 6371.0 # HuEk-FIEE (AR)

latl_rad = radians(latl)
lonl_rad = radians(lonl)
lat2_rad = radians(lat2)
lon2_rad = radians(lon2)

dlon = lon2_rad - lonl_rad
dlat lat2_rad - latl_rad

a = sin(dlat / 2)**2 + cos(latl_rad) * cos(lat2_rad)
* sin(dlon / 2)*%2
c = 2 * atan2(sqrt(a), sqrt(l - a))

distance = R * ¢
return distance

def idw_interpolate(target_coords, reference_coords_map,
reference_values_map, power_k=2):

HAT IDW Hfifd .
target_coords: (lat, lon) HFr&HI44Fs.
reference_coords_map: {point_id: (lat, lon)} &% fisk

reference_values_map: {point_id: value} &% T

power_k: IDW HJFFE4.

91

numerator = 0.0
denominator = 0.0
M f£ reference_values_map ' [y & th 7 & T
reference_coords_map
valid_points_for_idw = 0

for point_id, ref_value in
reference_values_map.items():
if pd.isna(ref_value): # Bkid NaN 1
continue

ref_coords = reference_coords_map.get(point_id)
if ref_coords is None:
print(f" &% HARZHE L {point_id} MR, *
Beid s S#EAT IDW. ")
continue

dist = haversine_distance(target_coords[0],
target_coords[1], ref_coords[0], ref_coords[1])

if dist == 0: # WHRHEFESBTEENSE S G EAR

KA R, FATRATH 2-9 155 1)

EWMREZANSE SR —AE CAXTRE

ONBRRRE, WREERN0, HiERENZA
MM (A 5D

EARG S, R dist=0 ZEkE H s S
FABE A, IXXT A 2-9 55 1 ki A A

HIMEKRK, dist B/, WESIEE K.

X1 IDW, WR—"12% A5 H b SE sk
N, BENEZESER,

AR E, S MRNEEE

dist = le-6

weight = 1.0 / (dist ** power_Kk)
numerator += ref_value * weight
denominator += weight
valid_points_for_idw +=1

if denominator == 0 or valid_points_for_idw == 0: #
WERATE 275 mi {2 #1 2 NaN B0 A B S5 5
return np.nan
return numerator / denominator

92

def process_all_weather_files_with_idw():

B AT 9 AN RS S S AEANIN 1) s A AU A2 B3R AT IDW i {H
AR B A B Bl 1 RIALED ARG R

print(" 45 IDW R<FEEE")

target_coordinates = SOURCE_COORDS[TARGET_POINT_ID]
reference_coordinates = {pid: SOURCE_COORDS[pid] for
pid in REFERENCE_POINT_IDS}

AT R EesE R, BETIELXY, [HE DataFrame
fused_data_sheets = {}

BAIFE it DataFrame MR 5| 250, 7] LLNEHE SC
1 F3REL
ERDNEHE SO 1 B IRAT R EAR B, AT LARATT S B R Ik) A
weather_code
try:
df_template_file_path =
os.path.join(BASE_WEATHER_DATA_FOLDER,
£"{TARGET_POINT_ID}{FILE_PREFIX}")
if not os.path.exists(df_template_file_path):
raise FileNotFoundError(f"#AF| HirA (HdE D
RS0 {df_template_file_path}' fEJylki! ")

xls_template =
pd.ExcelFile(df_template_file_path)
except Exception as e:
print (£" SHUSBCSCIFR i : {e}")
return

for sheet_name in SHEET_NAMES: # 4y3l4b¥E '1h' i1 '1d"
print(f"\n-—- [EELH T/ER: ' {sheet_name}' ---")
if sheet_name not in xls_template.sheet_names:
print(f" % i . AR ST Pk A B T AR R
'{sheet_name}', BkidtE. ")
continue

df_target_template = pd.read_excel(xls_template,
sheet_name=sheet_name)
if 'time' not in df_target_template.columns:
raise KeyError(f"#iti it TAF% '{sheet_name}'
FHRE] "time! A ™)

93

df_target_template['time'] =
pd.to_datetime(df_target_template['time'])
df_target_template.set_index('time"',
inplace=True)

VIaaas R DataFrame, Gty SR —2, HEE T, WHiE
JH7e IDW &5
df_fused_sheet =
pd.DataFrame(index=df_target_template.index)

SHTESH S CEdE 2 3 9) B4 ET LIEREE

all_reference_dfs_current_sheet = {}

for ref_id in REFERENCE_POINT_IDS:
file_path

os.path.join(BASE_WEATHER_DATA_FOLDER,
fr{ref_id}{FILE_PREFIX}")
try:
if not os.path.exists(file_path):
print(f" &% . HARSH A {ref_id} HIK
S t{file_path}', ¥ ZESHEIRIE. ")
continue
xls_ref = pd.ExcelFile(file_path)
if sheet_name in xls_ref.sheet_names:
df_ref = pd.read_excel(xls_ref,
sheet_name=sheet_name)
if 'time' not in df_ref.columns:
print(f"&&: 2% 5 {ref_id} HI3C
£ *{file_path}' T1E% '{sheet_name}' F#kAZF| 'time' %I, Btid.
")
continue
df_ref['time'] =
pd.to_datetime(df_ref['time'])
df_ref.set_index('time', inplace=True)
all_reference_dfs_current_sheet[ref_i
d] = df_ref
else:
print(f"&&: 2% {ref_id} M3
'{file_path}' FHAZTAEE '{sheet_name}'. ")
except Exception as e:
print(f" =% & {ref_id} #I3CHF
"{file_path}' ii4k. {e}™)

if not all_reference_dfs_current_sheet:

print(£" & A RIINEAEF 2% m B 1 T TAER

94

'{sheet_name}' [IDW if5&! ")
fused_data_sheets[f"{sheet_name}_idw_fused"]
= df_target_template # fRA7JRUBIEMR LA /T—
continue

B E T IDW HEUES) CRASEARCCARI B D9itE, HERR 200
A1)
AN A R B AR T B — A S, BIEREEE
numeric_cols_for_idw = []
for col in df_target_template.columns:
if col.lower() != COLUMN_TO_IGNORE.lower()
and pd.api.types.is_numeric_dtype(df_target_template[col]):
R R B AL T — DO Z%
DataFrame
col_exists_in_any_ref = any(col in
ref_df.columns for ref_df in
all_reference_dfs_current_sheet.values())
if col_exists_in_any_ref:
numeric_cols_for_idw.append(col)
else:
print(f" % '{col}' ZHEHZSHHIETIIR
|, HABAT IDWHHE, BEREMEHAERE (WRE. ")
if col in df_target_template.columns:
HEAZRESIBR (s 1D KIE
df_fused_sheet[col] =
df_target_template[coll]

print(f" B EA) S NG [71 e S e 0) = =

{numeric_cols_for_idw}")

ELFEEHIHE IDW %) (Hbin weather_code) M HE#ARA CHids
1) HIRERR
if COLUMN_TO_IGNORE in
df_target_template.columns:
df_fused_sheet[COLUMN_TO_IGNORE] =
df_target_template[COLUMN_TO_IGNORE]
else:
print(£"%4%. %] '{COLUMN_TO_IGNORE}' ZFERH L
PERAAELE, BAS IR G SR, ")

PRI B S EAT IDW HE
for timestamp_idx, _ in
enumerate(df_target_template.index):
current_timestamp =

95

df_target_template.index[timestamp_idx]
if (timestamp_idx + 1) %

(len(df_target_template.index) // 10 if
len(df_target_template.index) > 10 else 1) == 0 : # FTEIHE

print(f" IEAEALFE TAER ' {sheet_name}'
i} I [i] = , {current_timestamp}

({timestamp_idx+1}/{len(df_target_template.index)})")

for col_to_interpolate in
numeric_cols_for_idw:
reference_values_at_ts = {}
actual_ref_points_for_this_col_ts = {} #

FAA S bR T A RTE (R R 225 AR b

for ref_id, vref_df in
all_reference_dfs_current_sheet.items():
if col_to_interpolate in
ref_df.columns and current_timestamp in ref_df.index:
reference_values_at_ts[ref_id] =
ref_df.loc[current_timestamp, col_to_interpolatel]
actual_ref_points_for_this_col_ts
[ref_id] = reference_coordinates[ref_id] # fifi [FifFiI4Lts
else: HMERANZHE QAKX EF,
IDW pf $ A i~ Bk NaN

if reference_values_at_ts: # HEZ/0H A4

21l
M
actual_ref_points_for_this_col_ts fENAFE, FAE REEHEK
=
idw_value =

idw_interpolate(target_coordinates,
actual_ref_
points_for_this_col_ts,
reference_v
alues_at_ts,
power_K=IDW
_POWER_K)
df_fused_sheet.loc[current_timestamp,
col_to_interpolate] = idw_value
else: # WUERPTAZE n AR S 1%L
&, 24 NaN
df_fused_sheet.loc[current_timestamp,
col_to_interpolate] = np.nan

96

0 AREE BT 1 IDW SR E A EUE S (KON REAFAE T 255
), FATZET S WEARE] T

HHNZRAR . WORESE IDW HSE A, WOy NaN; i
A IDW HAEEARAT, WOARARAE .

fused_data_sheets[f"{sheet_name}_idw_fused"] =
df_fused_sheet.copy() # {rf7477 sheet Ml & 45E
print(f" TfE%X '{sheet_name}' AbH5Exk! ")

KA R e B TAERORAT B — 8T H) Excel SCfF
if fused_data_sheets:
print(f"\n IE7E¥ BT A Rl & J5 B9 OR S EHE IR A7 3
{OUTPUT_IDW_EXCEL_PATH}")
with pd.ExcelWriter(OUTPUT_IDW_EXCEL_PATH) as
writer:
for sheet_name_out, df_out in
fused_data_sheets.items():
EORAFET, AIRAEZE S (EERE time 51D AR [R5 @
H, R HR BN
df_out.reset_index().to_excel(writer,
sheet_name=sheet_name_out, index=False)
print (" REE R BRI R ")
else:
print(" EAEM TAERB R AMGEE, AR A S
")

if __name__ == "__main__":
AR SRAFAE
if not os.path.isdir(BASE_WEATHER_DATA_FOLDER):
print(f" £ & ! #& A& 2 K R B ¢ ko
' {BASE_WEATHER_DATA_FOLDER}'")
print ("JofldEX Ak, I 9 4> weather_data. xlsx
AL ")
else:
ARG EDAERIEC 1 (RO b — A H A s S
path_datal =
os.path.join(BASE_WEATHER_DATA_FOLDER,
f"{TARGET_POINT_ID}{FILE_PREFIX}")
found_other_data =
any(os.path.exists(os.path.join(BASE_WEATHER_DATA_FOLDER,
f"{i}{FILE_PREFIX}")) for i in REFERENCE_POINT_IDS)

97

if not os.path.exists(path_datal):
print(f 45! A HIRA Gl D KRS
'{path_datal}"' fEMHH! ")
elif not found_other_data:
print(f 451! FAZMETZSHE H (il 2-9) R
T IDW FHfE! ")
else:
process_all_weather_files_with_idw()

) &% 4 MLR F#% 040G

import pandas as pd

import numpy as np

import os

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split #
T AT e R A AR AIE, (HX B L% A 4 B B U ZR AN Tt

from sklearn.impute import SimpleImputer # T AbFEAFAEH
IFISSEN

——— AAERRE -

BASE_WEATHER_DATA_FOLDER = 'problemid_weather_data/'

FILE_PREFIX = '_weather_data.xlsx'

OUTPUT_MLR_EXCEL_PATH =
os.path.join(BASE_WEATHER_DATA_FOLDER, 'weather_LR.xlsx"')

TARGET_POINT_ID = 1 # % 1 2&AIMHFR S CetREs)
REFERENCE_POINT_IDS = list(range(2, 10)) # %~ 2 391k
9 BV [N REE

SHEET_NAMES = ['1h', "1d']
COLUMN_TO_IGNORE = 'weather_code (wmo code)' # XA
5RH, BEEBH SR

def train_and_predict_variable_with_mlr(variable_name,
all_dfs_current_sheet):

EEXF AR G AR &, IR — AN 2 s 2R [m] AR IR A7 T
all_dfs_current_sheet: % 94 DataFrame H%1%, df[0]
FHRE R 1), dfl1:122% 5 GdE 2-9).

print(£" IEfE A& '{variable_name}"' JIZrFITaM . .. ")

98

df_target = all_dfs_current_sheet[0] # #E 1 & H#p
dfs_reference = all_dfs_current_sheet[1:] # %k 2-9
FERHIEYR

HESHy CREHE 1)
if variable_name not in df_target.columns:
print(f" it His® '{variable_name}' 7£¥
P 1 PAEAE, Bl E. ")
return None # E{3# iR [H—4x NaN /] Series
y_series = df_target[variable_name].copy()

#OHERRE X CRkBZdE 2 21%dE 9 WF—1EE)
feature_df_list = []
feature_col_names = []
for i, ref_df in enumerate(dfs_reference):
source_id = REFERENCE_POINT_IDS[i] # ZREULSZIIR
ID (2 %]9)
if variable_name in ref_df.columns:
AFRES a4 LLIX 7 oRIE, #lan 'var_src2',
'var_src3'
feature_col_name =
f"{variable_name}_src{source_id}"
feature_df_list.append(ref_df[variable_name]
.rename(feature_col_name))
feature_col_names.append(feature_col_name)
else:
MRENSE A EXAN R E, RATTLLAE — 4
NaN {%1, J5%:H imputer A3
print(f" #&x: SHEHIEIR {source_id} /b E
'{variable_name}',4¢ﬁﬂi_NaN5ﬂ ")
HE—-5 y_series 5|51 NaN ¥4
nan_series = pd.Series(np.nan,
index=y_series.index,
name=f"{variable_name}_src{source_id}")
feature_df_list.append(nan_series)
feature_col_names.append(f"{variable_name}_s
rc{source_id}")

if not feature_df_list:
print(£" ey, AAE '{variable_name}' TS
FRARIE P AR, TGERAT RN, Bt ")
return y_series # &[H545HFRME, 33 None/NaN
Series

99

X_df = pd.concat(feature_df_list, axis=1)

XI55y X HIRS, AL NaN |
9 7R, BATTHEAL y 9 NaN b5 21T
combined_for_train =
X_df.join(y_series.rename('target_y'), how='inner') # H{rH
A HAE)47
y_train = combined_for_train['target_y']
X_train_raw = combined_for_train[feature_col_names]

THEEUIZREE) NaN

1. tH y_train & NaN, XEITAREH T
valid_y_train_mask = y_train.notna()

y_train = y_train[valid_y_train_mask]
X_train_raw = X_train_raw[valid_y_train_maskK]

2. AP X_train_raw) NaN (B, HBAMEIEAR)
BATINZEE BN X_df | fit_transform imputer,)5
Fi'€ transform X_train_raw F1/54E[1 X_predict
imputer = SimpleImputer(strategy='mean')
X_df_imputed =
pd.DataFrame(imputer.fit_transform(X_df),
columns=X_df.columns, index=X_df.index)

X_train = X_df_imputed.loc[X_train_raw.index] # M5E
I JE I X A ECH I ZRE 5
if X_train.empty or y_train.empty or len(X_train) <
len(feature_col_names) + 1 : # HififH LUsEdE %
print(f" #i5. s '{variable_name}' 5% NaN
JEEA RBREAREIT NG ({len(X_train) 7)), KRG HARME (g
ATAD @ NaN. ")
ATLLR ARG y_series, i —4N4 NaN ()54
return pd.Series(np.nan, index=df_target.index,
name=variable_name)

UNZRZ N m] A 1Y
model = LinearRegression()
try:
model.fit(X_train, y_train)
print(f" A '{variable_name}' HAIZ5E K.
")

except Exception as e_fit:

100

print(f" AZd '{variable_name}' #RIYIZRINK :
{e_fit}. Kfix[A] NaN. ")

return pd.Series(np.nan, index=df_target.index,
name=variable_name)

3 FH I ZRGT FORE A0 AN () B X_dF_imputed BEAT FlN
predicted_values = model.predict(X_df_imputed)
predicted_series = pd.Series(predicted_values,
index=X_df_imputed.index, name=variable_name)

return predicted_series
def process_all_weather_files_with_mlr():

B 9 ARSI, KRNI] AR BE AR B AT 2 Rt

o B RS BRI 1 B9 Ol Hl
print (" FFUAE b R ")
fused_data_sheets = {} # F A& G4 R
L L ORI O ARSI 12 sheet FLHT ID

=\
all_data_by_sheet_and_id = {sheet_name: {} for
sheet_name in SHEET_NAMES}

InEEEE SO 1 CH bR R/ BEBO
target_file_path =
os.path.join(BASE_WEATHER_DATA_FOLDER,
f"{TARGET_POINT_ID}{FILE_PREFIX}")
if not os.path.exists(target_file_path):
raise FileNotFoundError(f"#AZ|Hirm (BdkE 1) MK
S '{target_file_path}'! ™)
xls_target = pd.ExcelFile(target_file_path)

for sheet_name in SHEET_NAMES:
if sheet_name not in xls_target.sheet_names:
print(F" 2% . Hia XM 1 HH AR TIER
'{sheet_name}', ¥IiZHItE. ")
continue
df_target_sheet = pd.read_excel(xls_target,
sheet_name=sheet_name)
if 'time' not in df_target_sheet.columns:

101

raise KeyError(f"H#r3(ff 1 '{sheet_name}' 'k
ANF] 'time' FJI M)
df_target_sheet['time'] =
pd.to_datetime(df_target_sheet['time'])
df_target_sheet.set_index('time', inplace=True)
all_data_by_sheet_and_id[sheet_name] [TARGET_POIN
T_ID] = df_target_sheet

IS A Gl 2-9) EdE
for ref_id in REFERENCE_POINT_IDS:
file_path =
os.path.join(BASE_WEATHER_DATA_FOLDER,
f*{ref_id}{FILE_PREFIX}")
if not os.path.exists(file_path):
print(f" &5 HARSHE L {ref_id} AR
'{file_path}', KRugHEHEIE. ")
continue
try:
xls_ref = pd.ExcelFile(file_path)
for sheet_name in SHEET_NAMES:
if sheet_name in xls_ref.sheet_names and
sheet_name in all_data_by_sheet_and_id: # #fi{#HirEEAEAE
df_ref_sheet = pd.read_excel(xls_ref,
sheet_name=sheet_name)
if 'time' not in df_ref_sheet.columns:
print(f"&&: 2% 0 {ref_id} XfF
'{sheet_name}' 4LAZF| 'time"' %. ")
continue
df_ref_sheet['time'] =
pd.to_datetime(df_ref_sheet['time'])
df_ref_sheet.set_index('time’,
inplace=True)
all_data_by_sheet_and_id[sheet_name][
ref_id] = df_ref_sheet
except Exception as e:
print(F"il S 5 {ref_id} CfFRf S {e}™)

2. MR TARRIEAT AL
for sheet_name in SHEET_NAMES:
if TARGET_POINT_ID not in
all_data_by_sheet_and_id.get(sheet_name, {}):
print(f" T/EE '{sheet_name}' 7ZEX#HE 0 1 ki
o RN, B, ")

continue

102

df_target_template
all_data_by_sheet_and_id[sheet_name] [TARGET_POINT_ID]
df_fused_sheet =
pd.DataFrame(index=df_target_template.index) # #J4fitk45 R DF
print(f"\n-—- IEELH T/ER: '{sheet_name}' -—-")

RBCAFT TR R8s yI3%, #trIiy 2 [df_datal,
df_data2, ..., df_data9l]
b df_datal 2EAIHy 1, df_data2-9 Z&LATH X K
FRA1HE TARGET_POINT_ID JiFIF|E£E— M B
current_sheet_dfs_ordered =
[all_data_by_sheet_and_id[sheet_name].get (TARGET_POINT_ID)]
for ref_id in REFERENCE_POINT_IDS:
current_sheet_dfs_ordered.append(all_data_by
_sheet_and_id[sheet_name].get(ref_id,
pd.DataFrame(index=df_target_template.index))) # W RFEANSH
AR, A= DF (R gD

i BT A A BUE 5
numeric_cols_for_mlr = []
for col in df_target_template.columns:
if col.lower() != COLUMN_TO_IGNORE.lower()
and pd.api.types.is_numeric_dtype(df_target_template[col]):
HRIAI AL T 2D —ADSH A, FHEE X
EHIEE X
col_exists_in_any_ref = any(
col in ref_df.columns for ref_df in
current_sheet_dfs_ordered[1:] if ref_df is not None and not
ref_df.empty
)
if col_exists_in_any_ref:
numeric_cols_for_mlr.append(col)
else: # WERSBH AT HEBEARXNEUEY], BLEE
FHEARE 1 1R
print(£"%] '{col}' EHZSHELI PR
R3], K EEAHEE S 1 RAE. ")
if col in df_target_template.columns:
df_fused_sheet[col] =
df_target_template[coll]

print(f" ¥ XF BN BOE 21 3 AT 2 281 [T

{numeric_cols_for_mlr}")

103

HEZEHAERIES] (el weather_code) M HFRA (B
D
if COLUMN_TO_IGNORE in
df_target_template.columns:
df_fused_sheet [COLUMN_TO_IGNORE] =
df_target_template[COLUMN_TO_IGNORE]
else:
print(£"#+5. %] ' {COLUMN_TO_IGNORE}' 7£%#i
1 A, ARG R . ")

NN EUE Z1I S 2 Tt
for var_name in numeric_cols_for_mlr:
predicted_series
train_and_predict_variable_with_mlr(var_name,
current_sheet_dfs_ordered)
if predicted_series is not None:
df_fused_sheet[var_name]

predicted_series
else: # WORTMAKMG, W LA & J5ln {E 1H 78 Bl B

print(f"4& '{var_name}' KM, ¥ikfE
FIEE SO 1 BRI CInRAFAED . ")

if var_name in df_target_template.columns:

df_fused_sheet[var_name] =

df_target_template[var_namel

else:

df_fused_sheet[var_name] = np.nan

fused_data_sheets[f"{sheet_name}_mlr_fused"] =
df_fused_sheet.copy()
print(f" TfEX '{sheet_name}' AH5exk! ")

3. {RAF4S
if fused_data_sheets:
print(f"\n 1E7E K ot A5 /@l & J5 1 R OB R A7 3
{OUTPUT_MLR_EXCEL_PATH}")
with pd.ExcelWriter(OUTPUT_MLR_EXCEL_PATH) as
writer:
for sheet_name_out, df_out in
fused_data_sheets.items():
df_out.reset_index().to_excel(writer,
sheet_name=sheet_name_out, index=False)
print (" Frfi £ s g RS B R SEHE SRR ")
else:
print(" BAHEM TR ST EAR S (MLR J77%), RAE

104

Jln S E. ")

if __name__ == "__main__":
if not os.path.isdir(BASE_WEATHER_DATA_FOLDER):
print(f" # & ! #& A # K R B ¢ ko
' {BASE_WEATHER_DATA_FOLDER}'")
else:
try:
process_all_weather_files_with_mlr()
except Exception as e_main:
print(f" LEF KA EHiR: {e_main}")
traceback.print_exc()

5] 5 4 XGboost HI1Z% ARV

import pandas as pd

import numpy as np

import os

import xgboost as xgb

from sklearn.model_selection import train_test_split #
FIF AT RE AR R 06 i B

from sklearn.impute import SimpleImputer # T AbFEAFAEH
R RAE

import joblib # 4R ZLRAFIIZRETF) XGBoost 17y

import traceback

——— X ERwRoE (5280 MLR BRCAZE) ——-

BASE_WEATHER_DATA_FOLDER = 'problemid_weather_data/'

FILE_PREFIX = '_weather_data.xlsx'

OUTPUT_XGB_EXCEL_PATH =
os.path.join(BASE_WEATHER_DATA_FOLDER, 'weather_XG.xlsx') #
A4 R XGBoost

TARGET_POINT_ID = 1
REFERENCE_POINT_IDS = list(range(2, 10))

SHEET_NAMES = ['1h', "1d']
COLUMN_TO_IGNORE = 'weather_code (wmo code)'

XGBoost LAY
XGB_PARAMS = {
'objective': 'reg:squarederror', # [AlJI{E%, HirEi/h
W7 R %

105

'n_estimators': 100, # WEE GERXED

'learning_rate': 0.1, # FolE
'max_depth': 5, # BB R R ORIR S
'subsample': 0.8, # UIZRRERRIN IS, BEBLR
FE A1)
'colsample_bytree': 0.8, # MR, 51 CRF
fIE) FRRAE LA
'random_state': 42, # BEHLFRT, PRI RAT
=57
'n_jobs': -1 # R A T CPU
i
}
def

train_and_predict_variable_with_xgboost(variable_name,
all_dfs_current_sheet):

BS540, Y45 — XGBoost [ml AR A FFHEAT TR .
all_dfs_current_sheet: L% 9 4 DataFrame %1%, df[0]
T HWECEIE 1), dfl1:185% 5 dE 2-9).
print(f" IEfE N R '{variable_name}' IIZxF1 T
(XGBoost)...")

df_target = all_dfs_current_sheet[0]
dfs_reference = all_dfs_current_sheet[1:]

if variable_name not in df_target.columns:
print(f" %E&: HirdRE '{variable_name}' 7E##i L
1AL, B ")
return pd.Series(np.nan, index=df_target.index,
name=variable_name) # iX[f]4: NaN ¥4l

y_series = df_target[variable_name].copy()

feature_df_list = []
feature_col_names = []
for i, ref_df in enumerate(dfs_reference):
source_id = REFERENCE_POINT_IDS[i]
feature_col_name =
f"{variable_name}_src{source_id}"
feature_col_names.append(feature_col_name)
if ref_df is not None and not ref_df.empty and
variable_name in ref_df.columns:

106

feature_df_list.append(ref_df[variable_name]
.rename(feature_col_name))
else:
print(f" fen: ZEHIEE {source_id} Hh/DA
& '{variable_name}' BZ(#z =, WAI%E NaN &1, ")
G5 y_series E5IXF55H NaN F51, LUMFE 5 4:
imputer g 1E 6 AL B A I 1] £
nan_series = pd.Series(np.nan,
index=y_series.index, name=feature_col_name)
feature_df_list.append(nan_series)

if not feature_df_list:
print(f" 5. s '{variable_name}' fEfTH S
FRAEIE P IR BNRFAE, R B RLR HARE. ")

return y_series # (¥ iz[7| NaN Series
X_df_raw = pd.concat(feature_df_list, axis=1)

XI5F y M X IR E]
RAIFEM y_series #13F NaN fI#4> K45, 35H X_df_raw
XF AT
X_df_raw M y_series MiZOZ&#id concat HIFELHMH
df_target X}5% /&5l

W NGEHE: HH y_series F1dE NaN (K47 #E47 Il 2k
train_mask = y_series.notna()
y_train = y_series[train_mask]
X_train_for_fit = X_df_raw[train_mask] # HUH XM
y_train i) X 17

AEFIGRAET) NaN CHHISEIEA)
Imputer M i%Z7f X_train_for_fit b fit, REHE K
transform X_train_for_fit 1 5¢#f X_df_raw
imputer = SimpleImputer(strategy='mean')

if X_train_for_fit.empty or y_train.empty or
X_train_for_fit.isnull().all().all(): # 42 NaN sz BEdE
print(f" i, g '{variable_name}' j& NaN
Ja A REFEEAT IS, KRR A AE R ATHD 5 NaN. ")
return pd.Series(np.nan, index=df_target.index,
name=variable_name)

7EVTREE S NaN VI ZRRFIE A& imputer
X_train_imputed_fit =

107

imputer.fit_transform(X_train_for_fit)

1125 XGBoost FH 7Y
XGBoost nJ LLALHEH ANRFAEH A NaN Gl E 720, EN T
g —ml i, FATEHER
W R® A H m o, W L ik & xgb_model =
xgb .XGBRegressor(**XGB_PARAMS, missing=np.nan)
xgb_model = xgb.XGBRegressor(**XGB_PARAMS)

try:

print(f" X_train_imputed_fit shape:
{X_train_imputed_fit.shape}, y_train shape:
{y_train.shape}")

if X_train_imputed_fit.shape[0] < 1: # HifRAFA

raise ValueError("ilZEA ")

xgb_model.fit(X_train_imputed_fit, y_train)

print(f" & '{variable_name}' XGBoost f&%
MZR5Es. ")

except Exception as e_fit:

print(f" 5 & '{variable_name}' XGBoost f&%
grkMe: {e_fit}. iz NaN. ")

return pd.Series(np.nan, index=df_target.index,
name=variable_name)

A H IR R R0 B AN TR B) X_df _raw (BHAE) @47 0

iR X_df_raw FFF AT imputer PLSAR LI ZRiT—FL

X_predict_imputed = imputer.transform(X_df_raw) # ff
2 77 fit 47/ imputer

predicted_values =
xgb_model. predict(X_predict_imputed)
predicted_series = pd.Series(predicted_values,
index=X_df_raw.index, name=variable_name)

return predicted_series

def process_all_weather_files_with_xgboost(): # mMH¥#ik
I XGBoost
BRI 9 SRS, KRR I A (AR B AL S 04T XGBoost
EVER
ARG RS B (Bl 1 AL ED MRl & R

print(" JF#h XGBoost KA fHA™)

108

fused_data_sheets = {}

all_data_by_sheet_and_id = {sheet_name: {} for
sheet_name in SHEET_NAMES}

target_file_path =
os.path.join(BASE_WEATHER_DATA_FOLDER,
+"{TARGET_POINT_ID}{FILE_PREFIX}")
if not os.path.exists(target_file_path):
raise FileNotFoundError(+f"#AFIHrm (BdE 1) MK
ot ' {target_file_path}'! ")
xls_target = pd.ExcelFile(target_file_path)

for sheet_name in SHEET_NAMES:
if sheet_name not in xls_target.sheet_names:
continue
df_target_sheet = pd.read_excel(xls_target,
sheet_name=sheet_name)
if 'time' not in df_target_sheet.columns: raise
KeyError(f"H#Azff 1 '{sheet_name}' #{AZF| 'time' %! ")
df_target_sheet['time'] =
pd.to_datetime(df_target_sheet['time'])
df_target_sheet.set_index('time', inplace=True)
all_data_by_sheet_and_id[sheet_name] [TARGET_POIN
T_ID] = df_target_sheet

for ref_id in REFERENCE_POINT_IDS:
file_path =
os.path.join(BASE_WEATHER_DATA_FOLDER,
f"{ref_id}{FILE_PREFIX}")
if not os.path.exists(file_path):
print(f" &% . {KARSHE L {ref_id} KX
"{file_path}'. ")
continue
try:
x1ls_ref = pd.ExcelFile(file_path)
for sheet_name in SHEET_NAMES:
if sheet_name in xls_ref.sheet_names and
sheet_name in all_data_by_sheet_and_id:
df_ref_sheet = pd.read_excel(xls_ref,
sheet_name=sheet_name)
if 'time' not in df_ref_sheet.columns:
continue

109

df _ref_sheet['time'] =
pd.to_datetime(df_ref_sheet['time'])
df_ref_sheet.set_index('time’,
inplace=True)
all_data_by_sheet_and_id[sheet_name][
ref_id] = df_ref_sheet
except Exception as e: print(f"iliz% 4 {ref_id}
AR S {e}™)

for sheet_name in SHEET_NAMES:
if TARGET_POINT_ID not in
all_data_by_sheet_and_id.get(sheet_name, {}):
print(f" L{EE '{sheet_name}' 7EHdl i 1 Hih
%, Bhid.)

continue

df_target_template
all_data_by_sheet_and_id[sheet_name] [TARGET_POINT_ID]
df_fused_sheet =
pd.DataFrame(index=df_target_template.index)
print(f"\n-— [EEMAF TIEE: '{sheet_name}'
(XGBoost) ——-")

current_sheet_dfs_ordered =
[all_data_by_sheet_and_id[sheet_name].get (TARGET_POINT_ID)]
IRV S R BE SRR B, B — ANl IR
51 #12% DataFrame o 75 NaN ff) DataFrame (51
DUME 54 concat BEX 55 AT A I) 8
base_index = df_target_template.index
for ref_id in REFERENCE_POINT_IDS:
df_to_add =
all_data_by_sheet_and_id[sheet_name].get(ref_id)
if df_to_add is None or df_to_add.empty:
01— 5 EARR SIS DataFrame, 7144
Je AL B
print(F"#E&/r: SHEHE {ref_id} MIEXR
'{sheet_name}' N=ELHKL, ¥H NaNHE. ")
T IRFFA N, TTRUGBEIE 14 NaN K
DataFrame, #%|# 7t train_and_predict a4 K
current_sheet_dfs_ordered.append(pd.Data
Frame(index=base_index))
else:
current_sheet_dfs_ordered.append(df_to_a
dd.reindex(base_index)) # HiffZ 5% 5%

110

numeric_cols_for_xgb = []
for col in df_target_template.columns:
if col.lower() != COLUMN_TO_IGNORE.lower()
and pd.api.types.is_numeric_dtype(df_target_template[col]):
col_exists_in_any_ref = any(
ref_df is not None and col in
ref_df.columns for ref_df in current_sheet_dfs_ordered[1:]
)
if col_exists_in_any_ref:
numeric_cols_for_xgb.append(col)
else:
if col in df_target_template.columns:
df_fused_sheet[col] = df_target_template[col]

print(f" KX LT #0{E %) # 1T XGBoost TRl :
{numeric_cols_for_xgb}")

if COLUMN_TO_IGNORE in
df_target_template.columns:
df_fused_sheet [COLUMN_TO_IGNORE]
df_target_template[COLUMN_TO_IGNORE]

for var_name in numeric_cols_for_xgb:
predicted_series
train_and_predict_variable_with_xgboost(var_name,
current_sheet_dfs_ordered)
if predicted_series is not None:
df_fused_sheet[var_name]

predicted_series
else:
if var_name in df_target_template.columns:
df_fused_sheet[var_name] = df_target_template[var_name]
else: df_fused_sheet[var_name] = np.nan

BRI RIGEAR 5 AFE T fused_sheet 1, W EA1%
B b B
for col in df_target_template.columns:
if col not in df_fused_sheet.columns:
df_fused_sheet[col]

df_target_template[coll]

fused_data_sheets[f"{sheet_name}_xgb_fused"]
df_fused_sheet.copy()

111

print(f" T{ER '{sheet_name}' (XGBoost) #h¥E5¢
Bt ")

if fused_data_sheets:
print(£"\n IE/E¥FTH XGBoost flié i (1R A R A7 21 -
{OUTPUT_XGB_EXCEL_PATH}")
with pd.ExcelWriter(OUTPUT_XGB_EXCEL_PATH) as
writer:
for sheet_name_out, df_out in
fused_data_sheets.items():
df_out.reset_index().to_excel(writer,
sheet_name=sheet_name_out, index=False)
print (" i XGBoost fli& iR CRTIRAF! ")
else:
print (" &AM TAERB I E NG4S (XGBoost F7i%),
RAE RS H S ")

if __name__ == "__main__":
if not os.path.isdir(BASE_WEATHER_DATA_FOLDER):
print(f" & % ! #H A 2 K K B S J o
' {BASE_WEATHER_DATA_FOLDER}'")
else:
try:
process_all_weather_files_with_xgboost()
except Exception as e_main:
print(f" LREF KA EHER: {e_main}")
traceback.print_exc()

REDHTHIZ LA

import pandas as pd
import numpy as np
import traceback

—— XHBEMFIZRE ——

INPUT_EXCEL_PATH = 'results.xlsx!'
INPUT_SHEET_NAME = 'all'

OUTPUT_EXCEL_PATH = 'error_all_results.xlsx'

ACTUAL_POWER_COL = 'Huang_E4102_KW'

CAPACITY_COL = 'P_install' # fERARTFH Ci

PREDICTION_COLUMNS = [
'predicted_power_actual', # 2R IH

112

'predicted_power_actual_svr', # SVR
'predicted_power_actual_lstm_nwp', # LSTM
'predicted_power_actual_tf_nwp', # Transformer
'predicted_power_actual_lstm_nwp_idw',
'predicted_power_actual_lstm_nwp_LR"',
'predicted_power_actual_Llstm_nwp_XG'

]

MODEL_NAMES = [# AT&RRFMHI2
'Linear Regression',
'SVR',
'LSTM (NwP)',
'Transformer (NwWP)',
'"LSTMCNWP, IDW) ',
'LSTM(NWP,LR) ',
'LSTM(NWP, XG) '

]

HEHNTRE (Flm, ERIIEXT 0.01MW ANNEEE/EFERA)
DAYLIGHT_THRESHOLD_MW = 0.01

-—- BELERE
def filter_daylight_and_valid_capacity(df, actual_col,
pred_col, cap_col):

" E BN B A BRE R BE S

HIRBEEFIAN 0 B NaN, DL#GRTHER

valid_capacity_mask = (df[cap_coll.notna()) &

(df[cap_col] > 1le-6) # ZEBAT—AMR/PIEHK

daylight_mask = df[actual_col] > DAYLIGHT_THRESHOLD_MwW

final_mask = daylight_mask & valid_capacity_mask

EFEFRNEAS R NaN
valid_pred_mask = df[pred_col].notna()
final_mask = final_mask & valid_pred_mask

if not final_mask.any():
print(F"&%& . EAEA ' {pred_col}' HEABNENEER
/e, BARTEMBEGER! ")
return pd.Series(dtype=float),
pd.Series(dtype=float), pd.Series(dtype=float), 0O

y_true = df.loc[final_mask, actual_col]
y_pred = df.loc[final_mask, pred_col]
capacity = df.loc[final_mask, cap_col]

113

n_samples = len(y_true)
return y_true, y_pred, capacity, n_samples

def calculate_e_rmse(y_true, y_pred, capacity, n_samples):
if n_samples == 0: return np.nan
W{F y_true, y_pred, capacity BRI NFHKE—H
(filter_daylight C4b#)
normalized_errors_sq = ((y_true - y_pred) / capacity)**2
return np.sqrt(normalized_errors_sq.sum() / n_samples)

PDF AR KRAERRLL n

def calculate_e_mae(y_true, y_pred, capacity, n_samples):

if n_samples == 0: return np.nan
normalized_absolute_errors = np.abs((y_true - y_pred) /
capacity)

return normalized_absolute_errors.sum() / n_samples

def calculate_e_me(y_true, y_pred, capacity, n_samples):
if n_samples == 0: return np.nan
normalized_errors = (y_true - y_pred) / capacity
return normalized_errors.sum() / n_samples

def calculate_r(y_true, y_pred, n_samples):
if n_samples < 2: return np.nan # HXRAZBELBEFHIME
Pandas Series f] .corr() AR UIEEWTER/RBHXAE
return y_true.corr(y_pred)
HEMEH NumPy: return np.corrcoef(y_true, y_pred)[0,
1]

def calculate_cr(e_rmse_normalized):
if pd.isna(e_rmse_normalized): return np.nan
return (1 - e_rmse_normalized) * 100.0

def calculate_qr(y_true, y_pred, capacity, n_samples,
threshold=0.25):

if n_samples == 0: return np.nan
normalized_absolute_errors = np.abs((y_true - y_pred) /
capacity)

B_i = np.where(normalized_absolute_errors < threshold,
1, 0)
return B_i.sum() / n_samples * 100.0

EH .sum() MWARE np.mean() FH3ELL 100, FAB_i BELRE 08

114

return (normalized_absolute_errors < threshold).sum() /
n_samples * 100.0

—-- TEEE -
def main_calculate_errors():
SRR, T BRI, SRR
try:
print(f" IEZERREREERSCH: ' {INPUT_EXCEL_PATH}', TfE
#: '{INPUT_SHEET_NAME}'...")
df_results = pd.read_excel(INPUT_EXCEL_PATH,
sheet_name=INPUT_SHEET_NAME)
print ("HIERIIBAL ")

MALERIRBHFE
required_cols = [ACTUAL_POWER_COL, CAPACITY_COL] +
PREDICTION_COLUMNS
for col in required_cols:
if col not in df_results.columns:
raise KeyError(f"# kD NEMF]: '{col}"!
EE Excel Xk ™)

metrics_summary = {} # FAFHAMELER, J77{EH DataFrame

for pred_col, model_name in zip(PREDICTION_COLUMNS,
MODEL_NAMES) :
print(f"\n-—— IEFEAHEAE '{model_name}' (%:
'{pred_col}') WHHREHHF —")

y_true_day, y_pred_day, capacity_day, n_day =
filter_daylight_and_valid_capacity(
df_results, ACTUAL_POWER_COL, pred_col,
CAPACITY_COL
)

if n_day == 0O:
print(f" A '{model_name}' EMEFREFR
HBEESE S, TETEEE.)
e_rmse_val, e_mae_val, e_me_val, r_val,
cr_val, qr_val = (np.nan,) * 6
else:
print(f" fHiEH {n_day} MERHKBEESEE ST
. ")
e_rmse_val = calculate_e_rmse(y_true_day,
y_pred_day, capacity_day, n_day)

115

e_mae_val = calculate_e_mae(y_true_day,
y_pred_day, capacity_day, n_day)
e_me_val = calculate_e_me(y_true_day,
y_pred_day, capacity_day, n_day)
r_val = calculate_r(y_true_day, y_pred_day,
n_day)
cr_val = calculate_cr(e_rmse_val) # fEf L
HiHM e_rmse
gr_val = calculate_qr(y_true_day, y_pred_day,
capacity_day, n_day)

metrics_summary[model_name] = {
"B HRIRE (E_rmse)': e_rmse_val,
CSERSHRE (E_mae)': e_mae_val,
PEHRE (E_me)': e_me_val,
"HRARE (r)': r_val,
"HERE (C_R %)': cr_val,
"HH%E (Q_R %)': qr_val

}
print(f" & '{model_name}' FiFi+EEH. ")
print(f" E_rmse: {e_rmse_val:.uf}, E_mae:
{e_mae_val:.uf}, E_me: {e_me_val:.uf}")
print(f" r: {r_val:.uf}, C_R: {cr_val:.2f}%,

Q_R: {gr_val:.2f}%")

Ko BN DataFrame R4

df_metrics_summary = pd.DataFrame(metrics_summary)
print("\n\n-—- FrAEERZRIFCE ——")

print(df_metrics_summary)

df_metrics_summary.to_excel(OUTPUT_EXCEL_PATH,
index=True)

print(f"\n REZHE B IL B E R HEF T :
' {OUTPUT_EXCEL_PATH}'!! ™)

except FileNotFoundError:
print (F"{ABZE R ' {INPUT_EXCEL_PATH} ', EREH
AR ")
except KeyError as e:
print(F"HARFFHBHRST LA '{e}' HF, ERE Excel X
G P I EZR D)
traceback.print_exc()
except Exception as e:

print (f"7EHIRERFN KA T BRZARIHER: {e}™)

116

traceback.print_exc()

if __name__ == "__main__":
main_calculate_errors()

117

